Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Alzheimers Dement ; 19(9): 3848-3857, 2023 09.
Article in English | MEDLINE | ID: mdl-36960685

ABSTRACT

INTRODUCTION: Women are more vulnerable to Alzheimer's disease (AD) than men. The entorhinal cortex (EC) is one of the earliest structures affected in AD. We identified in cognitively intact elderly different molecular changes in the EC in relation to age. METHODS: Changes in 12 characteristic molecules in relation to age were determined by quantitative immunohistochemistry or in situ hybridization in the EC. They were arbitrarily grouped into sex steroid-related molecules, markers of neuronal activity, neurotransmitter-related molecules, and cholinergic activity-related molecules. RESULTS: The changes in molecules indicated increasing local estrogenic and neuronal activity accompanied by a higher and faster hyperphosphorylated tau accumulation in women's EC in relation to age, versus a mainly stable local estrogenic/androgenic and neuronal activity in men's EC. DISCUSSION: EC employs a different neurobiological strategy in women and men to maintain cognitive function, which seems to be accompanied by an earlier start of AD in women. HIGHLIGHTS: Local estrogen system is activated with age only in women's entorhinal cortex (EC). EC neuronal activity increased with age only in elderly women with intact cognition. Men and women have different molecular strategies to retain cognition with aging. P-tau accumulation in the EC was higher and faster in cognitively intact elderly women.


Subject(s)
Alzheimer Disease , Entorhinal Cortex , Male , Humans , Female , Aged , Alzheimer Disease/genetics , Aging
2.
Comput Intell Neurosci ; 2020: 8842390, 2020.
Article in English | MEDLINE | ID: mdl-33273902

ABSTRACT

The detection performance of high-frequency surface-wave radar (HFSWR) is closely related to the suppression effect of sea clutter. To effectively suppress sea clutter, a sea clutter suppression method based on radial basis function neural network (RBFNN) optimized by improved gray wolf optimization (IGWO) algorithm is proposed. Firstly, according to shortcomings of the standard gray wolf optimization (GWO) algorithm, such as slow convergence speed and easily getting into local optimum, an adaptive division of labor search strategy is proposed, which makes the population have abilities of both large-scale search and local exploration in the entire optimization process. Then, the IGWO algorithm is used to optimize RBFNN, finally, establishing a sea clutter prediction model (IGWO-RBFNN) and realizing the prediction and suppression of sea clutter. Experiments show that the IGWO algorithm has significantly improved convergence speed and optimization accuracy. Compared with the particle swarm algorithm with linear decreasing weight strategy (LDWPSO) and the GWO algorithm, the RBFNN prediction model optimized by the IGWO algorithm has higher prediction accuracy and has a better suppression effect on sea clutter of HFSWR.


Subject(s)
Neural Networks, Computer , Radar , Algorithms
3.
Ying Yong Sheng Tai Xue Bao ; 20(4): 791-7, 2009 Apr.
Article in Chinese | MEDLINE | ID: mdl-19565757

ABSTRACT

With two-year old seedlings of Hippophea rhamnoides and Shepherdia argentea as test materials, this paper studied their growth and photosynthetic characteristics under the stress of different concentration (0, 200, 400 and 600 mmol x L(-1)) NaCl. The results showed that the biomass and total leaf area per plant of H. rhamnoides and S. argentea seedlings decreased significantly with increasing NaCl concentration. Comparing with the control, the root/shoot ratio of H. rhamnoides and S. argentea seedlings under NaCl stress increased obviously, while the leaf mass per area (LMA) decreased slightly. When the NaCl concentration increased and the stress time prolonged, the net photosynthetic rate (P(n)), transpiration rate (T(r)), and stomatal conductance (G(s)) of H. rhamnoides and S. argentea seedlings declined markedly, the intercellular CO2 concentration (C(i)) increased after an initial decrease, whereas the water use efficiency (WUE) and stomatal limiting value (L(s)) decreased after an initial increase. The dynamic changes of G(s), C(i) and L(s) indicated that the decline of P(n) was mainly caused by the stomatal limitation in a short-term stress, and by non-stomatal limitation in a long-term stress. The poorer the salt tolerance of tree species and the higher the NaCl concentration, the earlier the transition from stomatal limitation to non-stomatal limitation would occur. As for H. rhamnoides, its morphological symptoms of salt injury appeared on the 10th day, and all of its seedlings were died on the 22th day under 600 mmol NaCl x L(-1) stress. In contrast, S. argentea could tolerate 600 mmol NaCl x L(-1) stress for above 30 days, illustrating that S. argentea, as an introduced tree species, had higher salt tolerance than H. rhamnoides, and could be planted widely in saline regions of China.


Subject(s)
Elaeagnaceae/growth & development , Hippophae/growth & development , Photosynthesis/physiology , Seedlings/growth & development , Sodium Chloride/pharmacology , Elaeagnaceae/physiology , Hippophae/physiology , Salt Tolerance , Seedlings/physiology , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...