Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37923248

ABSTRACT

INTRODUCTION: Lecithin cholesterol acyltransferase (LCAT) plays a crucial role in acyl-esterifying cholesterol in plasma, which is essential for reverse cholesterol transport (RCT). Previous studies indicated that its activity on both α and ß lipoproteins interpret its effects on lipoproteins for many controversial investigations of atherosclerosis. OBJECTIVES: To better understand the relationship between LCAT, diet-induced dyslipidemia and atherosclerosis, we developed a double knockout (LCAT-/-&LDLR-/-, DKO) hamster model to evaluate the specific role of LCAT independent of LDL clearance effects. METHODS: Plasma triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), and free cholesterol (FC) levels were measured using biochemical reagent kits. FPLC was performed to analyze the components of lipoproteins. Apolipoprotein content was assessed using western blotting (WB). The hamsters were fed a high cholesterol/high fat diet (HCHFD) to induce atherosclerosis. Oil Red O staining was employed to detect plaque formation. Peritoneal macrophages were studied to investigate the effects of LCAT on cholesterol uptake and efflux. RESULTS: On HCHFD, DKO hamsters exhibited significantly elevated levels of TG and FC, while HDL-C was nearly undetectable without affecting TC levels, as compared to low-density lipoprotein receptor (LDLR)-deficient (LDLR-/-, LKO) hamsters. Lipoprotein profiling revealed a marked increase in plasma chylomicron/very low-density lipoprotein (CM/VLDL) fractions, along with an unexpected reduction in LDL fraction in DKO hamsters. Furthermore, DKO hamsters displayed aggravated atherosclerotic lesions in the aorta, aortic root, and coronary artery relative to LKO hamsters, attributed to a pro-atherogenic lipoprotein profile and impaired cholesterol efflux in macrophages. CONCLUSIONS: Our study demonstrates the beneficial role of LCAT in inhibiting atherosclerotic development and highlights the distinctive lipid metabolism characteristics in hamsters with familial hypercholesterolemia.

2.
Front Cardiovasc Med ; 8: 738060, 2021.
Article in English | MEDLINE | ID: mdl-34796210

ABSTRACT

Elevated triglycerides are associated with an increased risk of cardiovascular disease (CVD). Therefore, it is very important to understand the metabolism of triglyceride-rich lipoproteins (TRLs) and their atherogenic role in animal models. Using low-density lipoprotein receptor knockout (LDLR-/-) Syrian golden hamsters, this study showed that unlike LDLR-/- mice, when LDLR-/- hamsters were fed a high cholesterol high-fat diet (HFD), they had very high plasma levels of triglycerides and cholesterol. We found that LDLR-/- hamsters exhibited increased serum TRLs and the ApoB100 and 48 in these particles after being fed with HFD. Treatment with ezetimibe for 2 weeks decreased these large particles but not the LDL. In addition, ezetimibe simultaneously reduced ApoB48 and ApoE in plasma and TRLs. The expression of LRP1 did not change in the liver. These findings suggested that the significantly reduced large particles were mainly chylomicron remnants, and further, the remnants were mainly cleared by the LDL receptor in hamsters. After 40 days on an HFD, LDLR-/- hamsters had accelerated aortic atherosclerosis, accompanied by severe fatty liver, and ezetimibe treatment reduced the consequences of hyperlipidemia. Compared with the serum from LDLR-/- hamsters, that from ezetimibe-treated LDLR-/- hamsters decreased the expression of vascular adhesion factors in vascular endothelial cells and lipid uptake by macrophages. Our results suggested that in the LDLR-/- hamster model, intestinally-derived lipoprotein remnants are highly atherogenic and the inflammatory response of the endothelium and foam cells from macrophages triggered atherosclerosis. The LDL receptor might be very important for chylomicrons remnant clearance in the Syrian golden hamster, and this may not be compensated by another pathway. We suggest that the LDLR-/- hamster is a good model for the study of TRLs-related diseases as it mimics more complex hyperlipidemia.

3.
Int J Mol Sci ; 20(14)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323736

ABSTRACT

OBJECTIVE: Familial hypercholesterolemia (FH) is a dominant inherited disease caused mainly by low-density lipoprotein receptor (LDLR) gene mutations. To different extents, both heterozygous and homozygous FH patients develop premature coronary heart disease (CHD). However, most of the experimental animal models with LDLR deficiency could not fully recapitulate FH because they develop hyperlipidemia and atherosclerosis only in homozygous, but not in heterozygous, form. In the current study, we investigated the responsiveness of the LDLR+/- hamster to dietary cholesterol and whether plasma cholesterol levels were positively associated with the severity of atherosclerosis. Approach and Methods: wild type WT and LDLR+/- hamsters were fed a high fat diet with different cholesterol contents (HCHF) for 12 or 16 weeks. Plasma lipids, (apo)lipoproteins, and atherosclerosis in both the aorta and coronary arteries were analyzed. After a HCHF diet challenge, the levels of total cholesterol (TC) in WT and LDLR+/- hamsters were significantly elevated, but the latter showed a more pronounced lipoprotein profile, with higher cholesterol levels that were positively correlated with dietary cholesterol contents. The LDLR+/- hamsters also showed accelerated atherosclerotic lesions in the aorta and coronary arteries, whereas only mild aortic lesions were observed in WT hamsters. CONCLUSIONS: Our findings demonstrate that, unlike other rodent animals, the levels of plasma cholesterol in hamsters can be significantly modulated by the intervention of dietary cholesterol, which were closely associated with severity of atherosclerosis in LDLR+/- hamsters, suggesting that the LDLR+/- hamster is an ideal animal model for FH and has great potential in the study of FH and atherosclerosis-related CHD.


Subject(s)
Atherosclerosis/blood , Atherosclerosis/pathology , Cholesterol, Dietary , Hyperlipidemias/blood , Hyperlipidemias/pathology , Hyperlipoproteinemia Type II/blood , Hyperlipoproteinemia Type II/pathology , Animals , Atherosclerosis/metabolism , Cholesterol/blood , Cricetinae , Female , Hyperlipidemias/metabolism , Hyperlipoproteinemia Type II/metabolism , Male , Receptors, LDL/deficiency , Receptors, LDL/metabolism
4.
Am J Transl Res ; 11(5): 3116-3127, 2019.
Article in English | MEDLINE | ID: mdl-31217881

ABSTRACT

Small rodents, especially mice and rats, have been widely used in atherosclerosis studies even though humans exhibit completely different lipoprotein metabolism and atherosclerotic characteristics. Until recently, various rodent models of human familial hypercholesterolemia (FH) have been created, including mice, rats, and golden Syrian hamsters. Although hamsters reportedly possess metabolic features similar to humans, there is no systematic characterization of the properties of circulating lipids and atherosclerotic lesions in these rodent models. We used three FH animal species (mice, rats, and hamsters) with low-density lipoprotein receptor (Ldlr) deficiency to fully assess lipoprotein metabolism and atherosclerotic characteristics. Compared to chow diet-fed mice and rats, Ldlr knockout (KO) hamsters showed increased cholesterols in LDL fractions similar to human FH patients. Upon 12-week high-cholesterol/high-fat diet feeding, both heterozygous and homozygous Ldlr KO hamsters displayed hyperlipidemic phenotypes, whereas only homozygous Ldlr KO mice and rats showed only moderate increases in plasma lipid levels. Moreover, rats were resistant to diet-induced atherosclerosis compared to mice, and hamsters showed more atherosclerotic lesions in the aortas and coronary arteries. Further morphological study revealed that only hamsters developed atherosclerosis in the abdominal segments, which is highly similar to FH patients. This unique animal model will provide insight into the translational study of human atherosclerosis and could be useful for developing novel treatments for FH patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...