Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.918
Filter
1.
Arch Dermatol Res ; 316(6): 323, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822901

ABSTRACT

Refractory diabetic wounds are still a clinical challenge that can cause persistent inflammation and delayed healing. Exosomes of adipose stem cells (ADSC-exos) are the potential strategy for wound repair; however, underlying mechanisms remain mysterious. In this study, we isolated ADSC-exos and identified their characterization. High glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) to establish in vitro model. The biological behaviors were analyzed by Transwell, wound healing, and tube formation assays. The underlying mechanisms were analyzed using quantitative real-time PCR, co-immunoprecipitation (Co-IP), IP, and western blot. The results showed that ADSC-exos promoted HG-inhibited cell migration and angiogenesis. In addition, ADSC-exos increased the levels of TRIM32 in HG-treated HUVECs, which promoted the ubiquitination of STING and downregulated STING protein levels. Rescue experiments affirmed that ADSC-exos promoted migration and angiogenesis of HG-treated HUVECs by regulating the TRIM32/STING axis. In conclusion, ADSC-exos increased the levels of TRIM32, which interacted with STING and promoted its ubiquitination, downregulating STING levels, thus promoting migration and angiogenesis of HG-treated HUVECs. The findings suggested that ADSC-exos could promote diabetic wound healing and demonstrated a new mechanism of ADSC-exos.


Subject(s)
Cell Movement , Exosomes , Glucose , Human Umbilical Vein Endothelial Cells , Membrane Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Wound Healing , Humans , Exosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Glucose/metabolism , Membrane Proteins/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Signal Transduction , Ubiquitination , Neovascularization, Physiologic , Cells, Cultured , Stem Cells/metabolism , Transcription Factors
2.
Front Endocrinol (Lausanne) ; 15: 1336787, 2024.
Article in English | MEDLINE | ID: mdl-38699389

ABSTRACT

Objectives: To investigate the association between contrast-enhanced ultrasound (CEUS) features of PTC and central lymph node metastasis (CLNM) and to develop a predictive model for the preoperative identification of CLNM. Methods: This retrospective study evaluated 750 consecutive patients with PTC from August 2020 to April 2023. Conventional ultrasound and qualitative CEUS features were analyzed for the PTC with or without CLNM using univariate and multivariate logistic regression analysis. A nomogram integrating the predictors was constructed to identify CLNM in PTC. The predictive nomogram was validated using a validation cohort. Results: A total of 684 patients were enrolled. The 495 patients in training cohort were divided into two groups according to whether they had CLNM (pCLNM, n= 191) or not (nCLNM, n= 304). There were significant differences in terms of tumor size, shape, echogenic foci, enhancement direction, peak intensity, and score based on CEUS TI-RADS between the two groups. Independent predictive US features included irregular shape, larger tumor size (≥ 1.0cm), and score. Nomogram integrating these predictive features showed good discrimination and calibration in both training and validation cohort with an AUC of 0.72 (95% CI: 0.68, 0.77) and 0.79 (95% CI: 0.72, 0.85), respectively. In the subgroup with larger tumor size, age ≤ 35 years, irregular shape, and score > 6 were independent risk factors for CLNM. Conclusion: The score based on preoperative CEUS features of PTC may help to identify CLNM. The nomogram developed in this study provides a convenient and effective tool for clinicians to determine an optimal treatment regimen for patients with PTC.


Subject(s)
Contrast Media , Lymphatic Metastasis , Nomograms , Thyroid Cancer, Papillary , Thyroid Neoplasms , Ultrasonography , Humans , Female , Male , Ultrasonography/methods , Retrospective Studies , Middle Aged , Lymphatic Metastasis/diagnostic imaging , Adult , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Aged
3.
Asian J Surg ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729876
4.
Pest Manag Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775471

ABSTRACT

BACKGROUND: Tetranychus cinnabarinus is one of the most common polyphagous arthropod herbivores, and is primarily controlled by the application of acaricides. The heavy use of acaricides has led to high levels of resistance to acaricides such as cyflumetofen, which poses a threat to global resistance management programs. Cyflumetofen resistance is caused by an increase in metabolic detoxification; however, the role of uridine diphosphate (UDP)-glycosyltransferase (UGT) genes in cyflumetofen resistance remains to be determined. RESULTS: Synergist 5-nitrouracil (5-Nul) significantly enhanced cyflumetofen toxicity in T. cinnabarinus, which indicated that UGTs are involved in the development of cyflumetofen resistance. Transcriptomic analysis and quantitative (q)PCR assays demonstrated that the UGT genes, especially UGT201H1, were highly expressed in the YN-CyR strain, compared to those of the YN-S strain. The RNA interference (RNAi)-mediated knockdown of UGT201H1 expression diminished the levels of cyflumetofen resistance in YN-CyR mites. The findings additionally revealed that the recombinant UGT201H1 protein plays a role in metabolizing cyflumetofen. Our results also suggested that the aromatic hydrocarbon receptor (AhR) probably regulates the overexpression of the UGT201H1 detoxification gene. CONCLUSION: UGT201H1 is involved in cyflumetofen resistance, and AhR may regulates the overexpression of UGT201H1. These findings provide deeper insights into the molecular mechanisms underlying UGT-mediated metabolic resistance to chemical insecticides. © 2024 Society of Chemical Industry.

5.
Cell Biosci ; 14(1): 66, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783336

ABSTRACT

BACKGROUND: Human patients often experience an episode of serious seizure activity, such as status epilepticus (SE), prior to the onset of temporal lobe epilepsy (TLE), suggesting that SE can trigger the development of epilepsy. Yet, the underlying mechanisms are not fully understood. The low-density lipoprotein receptor related protein (Lrp4), a receptor for proteoglycan-agrin, has been indicated to modulate seizure susceptibility. However, whether agrin-Lrp4 pathway also plays a role in the development of SE-induced TLE is not clear. METHODS: Lrp4f/f mice were crossed with hGFAP-Cre and Nex-Cre mice to generate brain conditional Lrp4 knockout mice (hGFAP-Lrp4-/-) and pyramidal neuron specific knockout mice (Nex-Lrp4-/-). Lrp4 was specifically knocked down in hippocampal astrocytes by injecting AAV virus carrying hGFAP-Cre into the hippocampus. The effects of agrin-Lrp4 pathway on the development of SE-induced TLE were evaluated on the chronic seizure model generated by injecting kainic acid (KA) into the amygdala. The spontaneous recurrent seizures (SRS) in mice were video monitored. RESULTS: We found that Lrp4 deletion from the brain but not from the pyramidal neurons elevated the seizure threshold and reduced SRS numbers, with no change in the stage or duration of SRS. More importantly, knockdown of Lrp4 in the hippocampal astrocytes after SE induction decreased SRS numbers. In accord, direct injection of agrin into the lateral ventricle of control mice but not mice with Lrp4 deletion in hippocampal astrocytes also increased the SRS numbers. These results indicate a promoting effect of agrin-Lrp4 signaling in hippocampal astrocytes on the development of SE-induced TLE. Last, we observed that knockdown of Lrp4 in hippocampal astrocytes increased the extracellular adenosine levels in the hippocampus 2 weeks after SE induction. Blockade of adenosine A1 receptor in the hippocampus by DPCPX after SE induction diminished the effects of Lrp4 on the development of SE-induced TLE. CONCLUSION: These results demonstrate a promoting role of agrin-Lrp4 signaling in hippocampal astrocytes in the development of SE-induced development of epilepsy through elevating adenosine levels. Targeting agrin-Lrp4 signaling may serve as a potential therapeutic intervention strategy to treat TLE.

6.
ACS Nano ; 18(19): 12377-12385, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38701373

ABSTRACT

Two-dimensional electronic materials are a promising candidate for beyond-silicon electronics due to their favorable size scaling of electronic performance. However, a major challenge is the heterogeneous integration of 2D materials with CMOS processes while maintaining their excellent properties. In particular, there is a knowledge gap in how thin film deposition and processes interact with 2D materials to alter their strain and doping, both of which have a drastic impact on device properties. In this study, we demonstrate how to utilize process-induced strain, a common technique extensively applied in the semiconductor industry, to enhance the carrier mobility in 2D material transistors. We systematically varied the tensile strain in monolayer MoS2 transistors by iteratively depositing thin layers of high-stress MgOx stressor. At each thickness, we combined Raman spectroscopy and transport measurements to unravel and correlate the changes in strain and doping within each transistor with their performance. The transistors displayed uniform strain distributions across their channels for tensile strains of up to 0.48 ± 0.05%, at 150 nm of stressor thickness. At higher thicknesses, mechanical instability occurred, leading to nonuniform strains. The transport characteristics systematically varied with strain, with enhancement in electron mobility at a rate of 130 ± 40% per % strain and enhancement of the channel saturation current density of 52 ± 20%. This work showcases how established CMOS technologies can be leveraged to tailor the transport in 2D transistors, accelerating the integration of 2D electronics into a future computing infrastructure.

7.
Pathol Res Pract ; 259: 155353, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38797129

ABSTRACT

Ferroptosis is a novel type of iron-dependent programmed cell death characterised by intracellular iron overload, increased lipid peroxidation and abnormal accumulation of reactive oxygen species.It has been implicated in the progression of several diseases including cancer, ischaemia-reperfusion injury, neurodegenerative diseases and liver disease. The etiology of endometriosis (EMS) is still unclear and is associated with multiple factors, often accompanied by various forms of cell death and a complex microenvironment. In recent decades, the role of non-traditional forms of cell death, represented by ferroptosis, in endometriosis has come to the attention of researchers. This article reviews the transitional role of iron homeostasis in the development of ferroptosis, the characteristics and regulatory mechanisms of ferroptosis, and focuses on summarising the links between iron death and various pathogenic mechanisms of EMS, including oxidative stress, dysregulation of lipid metabolism, inflammation, autophagy and epithelial-mesenchymal transition. The possible applications of ferroptosis in the treatment of EMS, future research directions and current issues are discussed with the aim of providing new ideas for further understanding of EMS.

8.
J Hazard Mater ; 472: 134477, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38703682

ABSTRACT

Interfacial challenges in unconventional oil extraction include heavy oil-water-solid multiphase separation and corrosion inhibition. Herein, a novel strategy based on interfacial hydrogen bonding reconstruction is proposed for constructing multifunctional interfacially active materials (MIAMs) to address multi-interfacial separation needs. A simple one-pot method is applied to successfully synthesize four different MIAM varieties, integrating site groups (-NH2, OSO, -COOH, and Si-O-Si) with multiple hydrogen bonds (HBs) into allyl polyether chains. The results indicate that all synthesized MIAMs excel in demulsification, detergency, and corrosion inhibition simultaneously, even at 25 °C. Their dehydration efficiency for different water-in-oil emulsions (even heavy oil emulsion) surpasses 99.9 % even at 16 °C, showing their excellent energy-saving potential for field applications. Furthermore, they demonstrate effective, nondestructive static cleaning (up to 86 %) of adhered oil from solid surfaces at 25 °C and provide corrosion inhibition effects (up to 92.09 %) on mild steel immersed in saturated brine. Mechanistic tests reveal that incorporating multiple HB sites in MIAMs dramatically enhances their effectiveness in interfacial separations. Based on these findings, an HB-dominated noncovalent interaction reconstruction strategy is tentatively proposed to develop advanced materials for low-carbon, efficient interfacial separations.

9.
Orphanet J Rare Dis ; 19(1): 218, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802922

ABSTRACT

BACKGROUND: Microtia is reported to be one of the most common congenital craniofacial malformations. Due to the complex etiology and the ethical barrier of embryonic study, the precise mechanisms of microtia remain unclear. Here we report a rare case of microtia with costal chondrodysplasia based on bioinformatics analysis and further verifications on other sporadic microtia patients. RESULTS: One hundred fourteen deleterious insert and deletion (InDel) and 646 deleterious SNPs were screened out by WES, candidate genes were ranked in descending order according to their relative impact with microtia. Label-free proteomic analysis showed that proteins significantly different between the groups were related with oxidative stress and energy metabolism. By real-time PCR and immunohistochemistry, we further verified the candidate genes between other sporadic microtia and normal ear chondrocytes, which showed threonine aspartase, cadherin-13, aldolase B and adiponectin were significantly upregulated in mRNA levels but were significantly lower in protein levels. ROS detection and mitochondrial membrane potential (∆ Ψ m) detection proved that oxidative stress exists in microtia chondrocytes. CONCLUSIONS: Our results not only spot new candidate genes by WES and label-free proteomics, but also speculate for the first time that metabolism and oxidative stress may disturb cartilage development and this might become therapeutic targets and potential biomarkers with clinical usefulness in the future.


Subject(s)
Congenital Microtia , Oxidative Stress , Humans , Congenital Microtia/genetics , Congenital Microtia/metabolism , Oxidative Stress/genetics , Proteomics , Male , Female , Chondrocytes/metabolism , Chondrocytes/pathology , Multiomics
10.
J Biophotonics ; : e202400015, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38613161

ABSTRACT

Pollution from toxic spores has caused us a lot of problems because spores are extremely resistant and can survive most disinfectants. Therefore, the detection of spore response to disinfectant is of great significance for the development of effective decontamination strategies. In this work, we investigated the effect of 0.5% sodium hypochlorite on the molecular and morphological properties of single spores of Bacillus subtilis using single-cell techniques. Laser tweezers Raman spectroscopy showed that sodium hypochlorite resulted in Ca2+-dipicolinic acid release and nucleic acid denaturation. Atomic force microscopy showed that the surface of treated spores changed from rough to smooth, protein shells were degraded at 10 min, and the permeability barrier was destroyed at 15 min. The spore volume decreased gradually over time. Live-cell imaging showed that the germination and growth rates decreased with increasing treatment time. These results provide new insight into the response of spores to sodium hypochlorite.

11.
BMC Oral Health ; 24(1): 407, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556862

ABSTRACT

BACKGROUND: Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS: DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS: The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION: KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.


Subject(s)
Anthraquinones , Azo Compounds , Osteogenesis , Stem Cells , Humans , Osteogenesis/physiology , Stem Cells/metabolism , Dental Pulp , Cell Proliferation , Cell Differentiation , Cells, Cultured , Histone Acetyltransferases/metabolism
12.
Nat Commun ; 15(1): 3546, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670960

ABSTRACT

Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the nanoscale, however, remains challenging. Here, we study the role of orbital angular momentum in phase singularities in graphene, particularly at the atomic level, through scanning tunneling microscopy and spectroscopy. Our experiments demonstrate that the scatterings between different orbital angular momentum states, which are induced by local rotational symmetry-breaking potentials, can generate additional phase singularities, and result in robust single-wavefront dislocations in real space. Our results pave the way for exploring the effects of orbital degree of freedom on quantum phases in quasiparticle interference processes.

13.
ACS Appl Mater Interfaces ; 16(17): 22025-22034, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634322

ABSTRACT

Manipulation of selectivity in the catalytic electrochemical carbon dioxide reduction reaction (eCO2RR) poses significant challenges due to inevitable structure reconstruction. One approach is to develop effective strategies for controlling reaction pathways to gain a deeper understanding of mechanisms in robust CO2RR systems. In this work, by precise introduction of 1,10-phenanthroline as a bidentate ligand modulator, the electronic property of the copper site was effectively regulated, thereby directing selectivity switch. By modification of [Cu3(btec)(OH)2]n, the use of [Cu2(btec)(phen)2]n·(H2O)n achieved the selectivity switch from ethylene (faradaic efficiency (FE) = 41%, FEC2+ = 67%) to methane (FECH4 = 69%). Various in situ spectroscopic characterizations revealed that [Cu2(btec)(phen)2]n·(H2O)n promoted the hydrogenation of *CO intermediates, leading to methane generation instead of dimerization to form C2+ products. Acting as a delocalized π-conjugation scaffold, 1,10-phenanthroline in [Cu2(btec)(phen)2]n·(H2O)n helps stabilize Cuδ+. This work presents a novel approach to regulate the coordination environment of active sites with the aim of selectively modulating the CO2RR.

14.
J Cardiothorac Surg ; 19(1): 194, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594687

ABSTRACT

BACKGROUND: Primary cardiac angiosarcoma(PCA) has a low incidence rate and poor prognosis. Currently, no unified clinical treatment standards are available. CASE PRESENTATION: We report the case of a 48-year-old man presenting chest tightness, breathlessness, and dyspnea. Imaging and postoperative histopathologic studies confirmed PCA and that the tumor had invaded the entire right atrium. The patient developed progressive disease (PD) during postoperative radiotherapy. We used immunotherapy combined with targeted therapy based on the results of molecular profile and evaluation of tertiary lymphoid structures (TLSs) and programmed cell death-ligand 1 (PD-L1). After treatment, the metastatic lymph nodes of the patient were reduced to a certain extent, indicating that combination therapy was effective. CONCLUSION: To the best of our knowledge, this is the first report of radiotherapy combined with anti-PD-1 and tyrosine kinase inhibitors(TKI) for PCA. In addition, this is the first report on immunotherapy for PCA based on new evaluation methods, including TLSs, PD-L1, and genomic profile.


Subject(s)
Hemangiosarcoma , Lung Neoplasms , Tertiary Lymphoid Structures , Male , Humans , Middle Aged , B7-H1 Antigen , Hemangiosarcoma/diagnosis , Hemangiosarcoma/therapy , Lung Neoplasms/pathology
15.
Angew Chem Int Ed Engl ; : e202401311, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38606491

ABSTRACT

Electrocatalytic carbonylation of CO and CH3OH to dimethyl carbonate (DMC) on metallic palladium (Pd) electrode offers a promising strategy for C1 valorization at the anode. However, its broader application is limited by the high working potential and the low DMC selectivity accompanied with severe methanol self-oxidation. Herein, our theoretical analysis of the intermediate adsorption interactions on both Pd0 and Pd4+ surfaces revealed that inevitable reconstruction of Pd surface under strongly oxidative potential diminishes its CO adsorption capacity, thus damaging the DMC formation. Further theoretical modeling indicates that doping Pd with Cu not only stabilizes low-valence Pd in oxidative environments but also lowers the overall energy barrier for DMC formation. Guided by this insight, we developed a facile two-step thermal shock method to prepare PdCu alloy electrocatalysts for DMC. Remarkably, the predicted Pd3Cu demonstrated the highest DMC selectivity among existing Pd-based electrocatalysts, reaching a peaked DMC selectivity of 93 % at 1.0 V versus Ag/AgCl electrode. (Quasi) in situ spectra investigations further confirmed the predicted dual role of Cu dopant in promoting Pd-catalyzed DMC formation.

16.
Biology (Basel) ; 13(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38666856

ABSTRACT

Soil salinization is one of the leading threats to global ecosystems, food security, and crop production. Plant growth-promoting rhizobacteria (PGPRs) are potential bioinoculants that offer an alternative eco-friendly agricultural approach to enhance crop productivity from salt-deteriorating lands. The current work presents bacterial strain CNUC13 from maize rhizosphere soil that exerted several PGPR traits and abiotic stress tolerance. The strain tolerated up to 1000 mM NaCl and 30% polyethylene glycol (PEG) 6000 and showed plant growth-promoting (PGP) traits, including the production of indole-3-acetic acid (IAA) and siderophore as well as phosphate solubilization. Phylogenetic analysis revealed that strain CNUC13 was Microbacterium azadirachtae. Maize plants exposed to high salinity exhibited osmotic and oxidative stresses, inhibition of seed germination, plant growth, and reduction in photosynthetic pigments. However, maize seedlings inoculated with strain CNUC13 resulted in significantly improved germination rates and seedling growth under the salt-stressed condition. Specifically, compared with the untreated control group, CNUC13-treated seedlings exhibited increased biomass, including fresh weight and root system proliferation. CNUC13 treatment also enhanced photosynthetic pigments (chlorophyll and carotenoids), reduced the accumulation of osmotic (proline) and oxidative (hydrogen peroxide and malondialdehyde) stress indicators, and positively influenced the activities of antioxidant enzymes (catalase, superoxide dismutase, and peroxidase). As a result, CNUC13 treatment alleviated oxidative stress and promoted salt tolerance in maize. Overall, this study demonstrates that M. azadirachtae CNUC13 significantly enhances the growth of salt-stressed maize seedlings by improving photosynthetic efficiency, osmotic regulators, oxidative stress resilience, and antioxidant enzyme activity. These findings emphasize the potential of utilizing M. azadirachtae CNUC13 as a bioinoculant to enhance salt stress tolerance in maize, providing an environmentally friendly approach to mitigate the negative effects of salinity and promote sustainable agriculture.

17.
Cell Commun Signal ; 22(1): 247, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689280

ABSTRACT

BACKGROUND: Renal fibrosis is a prevalent manifestation of chronic kidney disease (CKD), and effective treatments for this disease are currently lacking. Myofibroblasts, which originate from interstitial fibroblasts, aggregate in the renal interstitium, leading to significant accumulation of extracellular matrix and impairment of renal function. The nonreceptor tyrosine kinase c-Abl (encoded by the Abl1 gene) has been implicated in the development of renal fibrosis. However, the precise role of c-Abl in this process and its involvement in fibroblast-myofibroblast transition (FMT) remain poorly understood. METHODS: To investigate the effect of c-Abl in FMT during renal fibrosis, we investigated the expression of c-Abl in fibrotic renal tissues of patients with CKD and mouse models. We studied the phenotypic changes in fibroblast or myofibroblast-specific c-Abl conditional knockout mice. We explored the potential targets of c-Abl in NRK-49F fibroblasts. RESULTS: In this study, fibrotic mouse and cell models demonstrated that c-Abl deficiency in fibroblasts mitigated fibrosis by suppressing fibroblast activation, fibroblast-myofibroblast transition, and extracellular matrix deposition. Mechanistically, c-Abl maintains the stability of the RACK1 protein, which serves as a scaffold for proteins such as c-Abl and focal adhesion kinase at focal adhesions, driving fibroblast activation and differentiation during renal fibrosis. Moreover, specifically targeting c-Abl deletion in renal myofibroblasts could prove beneficial in established kidney fibrosis by reducing RACK1 expression and diminishing the extent of fibrosis. CONCLUSIONS: Our findings suggest that c-Abl plays a pathogenic role in interstitial fibrosis through the regulation of RACK1 protein stabilization and myofibroblast differentiation, suggesting a promising strategy for the treatment of CKD.


Subject(s)
Fibroblasts , Fibrosis , Myofibroblasts , Proto-Oncogene Proteins c-abl , Receptors for Activated C Kinase , Signal Transduction , Animals , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-abl/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Humans , Mice , Fibroblasts/metabolism , Fibroblasts/pathology , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Kidney/pathology , Kidney/metabolism , Male , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Mice, Knockout , Mice, Inbred C57BL
18.
Heliyon ; 10(6): e27953, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545178

ABSTRACT

Background and objectives: The neutrophil-to-lymphocyte ratio (NLR) is a widely recognized marker of inflammation in peripheral blood. However, its specific role in neuronal intranuclear inclusion disease (NIID) has not been reported. This study aims to investigate the relationship between NIID and NLR. Methods: A multicenter database was collected, including 157 NIID patients from seven hospitals (The Affiliated Hospital of Xuzhou Medical University, Yantai Yuhuangding Hospital, Tengzhou Central People's Hospital,The Affiliated Brain Hospital of Nanjing Medical University, Liaocheng People's Hospital,The Second Hospital of Shandong University, Inner Mongolia People's Hospital, Xuanwu Hospital Capital Medical University,The First Affiliated Hospital of USTC), along with 157 age- and gender-matched healthy control subjects. White blood cell counts (including neutrophils, lymphocytes, monocytes, eosinophils, and basophils) were obtained, and the NLR was calculated. Additionally, cognitive impairment was assessed using clinical evaluation scores. Results: NIID patients exhibited significantly higher NLR values compared to the healthy control group (p < 0.001). The plasma NLR levels in NIID patients showed a weak positive correlation with disease duration (r = 0.219, p = 0.016). However, no significant correlations were found between NLR and age of onset or cognitive impairment (p > 0.05). Conclusion: There is a significant association between NLR and NIID, suggesting a potential role of peripheral blood inflammation in the pathogenesis of NIID.

19.
Chem Biodivers ; 21(4): e202400244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38426640

ABSTRACT

Five new compounds (1, 2, 7, 12, and 16), along with fifteen known ones, were isolated from Ajuga lupulina Maxim. Their structures were revealed by analysing spectroscopic data (MS, NMR), and experimental and calculated ECD spectra was used to deduce the absolute configuration. Compound 16, with eight carbon atoms, was firstly isolated from the nature. All the isolates were evaluated for their inhibitory effect on RSL3-induced ferroptosis in HT22 mouse hippocampal neuronal cells. Among them, the abietane-type diterpenoids (7-11) significantly inhibited ferroptosis with EC50 values of 0.83 µM, 2.05 µM, 0.96 µM, 1.47 µM, and 1.19 µM, respectively.


Subject(s)
Ajuga , Ferroptosis , Animals , Mice , Molecular Structure , Ajuga/chemistry , Abietanes/chemistry , Magnetic Resonance Spectroscopy
20.
Eur J Med Chem ; 269: 116299, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38479167

ABSTRACT

Dendritic cells (DCs) play a pivotal role in controlling HIV-1 infections of CD4+ T cells. DC-SIGN, which is expressed on the surface of DCs, efficiently captures HIV-1 virions by binding to the highly mannosylated membrane protein, gp120, and then the DCs transport the virus to target T cells in lymphoid organs. This study explored the modification of T20, a peptide inhibitor of HIV-1 fusion, by conjugation of the N-terminus with varying sizes of oligomannose, which are DC-SIGN-specific carbohydrates, aiming to create dual-targeting HIV inhibitors. Mechanistic studies indicated the dual-target binding of the conjugates. Antiviral assays demonstrated that N-terminal mannosylation of T20 resulted in increased inhibition of the viral infection of TZM-b1 cells (EC50 = 0.3-0.8 vs. 1.4 nM). Pentamannosylated T20 (M5-T20) exhibited a stronger inhibitory effect on virus entry into DC-SIGN+ 293T cells compared with T20 (67% vs. 50% inhibition at 500 µM). M5-T20 displayed an extended half-life in rats relative to T20 (T1/2: 8.56 vs. 1.64 h, respectively). These conjugates represent a potential new treatment for HIV infections with improved antiviral activity and pharmacokinetics, and this strategy may prove useful in developing dual-target inhibitors for other pathogens that require DC-SIGN involvement for infection.


Subject(s)
HIV Fusion Inhibitors , HIV Infections , HIV-1 , Animals , Rats , Enfuvirtide/pharmacology , Enfuvirtide/metabolism , HIV Fusion Inhibitors/pharmacology , HIV Fusion Inhibitors/metabolism , Peptide Fragments/pharmacology , Peptide Fragments/metabolism , HIV Envelope Protein gp41/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...