Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 16(10): 17197-17209, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36222585

ABSTRACT

Owing to several advantages of metallic sodium (Na), such as a relatively high theoretical capacity, low redox potential, wide availability, and low cost, Na metal batteries are being extensively studied, which are expected to play a major role in the fields of electric vehicles and grid-scale energy storage. Although considerable efforts have been devoted to utilizing MXene-based materials for suppressing Na dendrites, achieving a stable cycling of Na metal anodes remains extremely challenging due to, for example, the low Coulombic efficiency (CE) caused by the severe side reactions. Herein, a g-C3N4 layer was attached in situ on the Ti3C2 MXene surface, inducing a surface state reconstruction and thus forming a stable hetero-interphase with excellent sodiophilicity between the MXene and g-C3N4 to inhibit side reactions and guide uniform Na ion flux. The 3D construction can not only lower the local current density to facilitate uniform Na plating/stripping but also mitigate volume change to stabilize the electrolyte/electrode interphase. Thus, the 3D Ti3C2 MXene@g-C3N4 nanocomposite enables much enhanced average CEs (99.9% at 1 mA h cm-2, 0.5 mA cm-2) in asymmetric half cells, long-term stability (up to 700 h) for symmetric cells, and stable cycling (up to 800 cycles at 2 C), together with outstanding rate capability (up to 20 C), of full cells. The present study demonstrates an approach in developing practically high performance for Na metal anodes.

2.
ACS Appl Mater Interfaces ; 13(29): 34320-34331, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34275274

ABSTRACT

Dendrite growth under large current density is the key intrinsic issue impeding a wider application of Li metal anodes. Previous studies mainly focused on avoiding dendrite growth by building an additional interface layer or surface modification. However, the mechanism and factors affecting dendrite growth for Li metal anodes are still unclear. Herein, we analyze the causes for dendrite growth, which leads us to suggest three-dimensional (3D) metal anodes as a promising approach to overcome the dendrite issues. A 3D composite Li anode was prepared from renewable carbonized wood doped with Sn to demonstrate its superior electrochemical performance compared with Li foils. The anode was cycled at various current densities from 0.1 to 10 mA cm-2 for five cycles at each current density, displaying low overpotential compared with conventional Li foils. Long galvanostatic cycling at 1 mA cm-2 for 1000 h and at 2 mA cm-2 for 500 h was achieved without dendrite growth. Further analysis reveals that the 3D structure facilitates surface diffusion by increasing the surface area from 5.23 × 10-3 m2 g-1 (Li foil) to 2.64 m2 g-1 and by creating nanoscale separation walls. The tin alloying effectively prevents non-uniform lithium plating by creating abundant nucleation centers. Additionally, suitable alloying elements for a wider range of 3D Li anodes have been identified from density functional theory calculations.

3.
Angew Chem Int Ed Engl ; 59(23): 8991-8997, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32078223

ABSTRACT

In hunting for safe and cost-effective materials for post-Li-ion energy storage, the design and synthesis of high-performance solid electrolytes (SEs) for all-solid-state batteries are bottlenecks. Many issues associated with chemical stability during processing and storage and use of the SEs in ambient conditions need to be addressed. Now, the effect of water as well as oxyhdryl group (. OH) on NaBi3 O4 Cl2 are investigated by evaluating ionic conductivity. The presence of water and . OH results in an increase in ionic conductivity of NaBi3 O4 Cl2 owing to diffusion of H2 O into NaBi3 O4 Cl2 , partially forming binding . OH through oxygen vacancy repairing. Ab initio calculations reveal that the electrons significantly accumulate around . OH and induce a more negative charge center, which can promote Na+ hopping. This finding is fundamental for understanding the essential role of H2 O in halide-based SEs and provides possible roles in designing water-insensitive SEs through control of defects.

4.
ACS Appl Mater Interfaces ; 11(43): 40125-40133, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31592636

ABSTRACT

NASICON-type of solid-state electrolyte, Na3Zr2Si2PO12 (NZSP), is one of the potential solid-state electrolytes for all-solid-state Na battery and Na-air battery. However, in solid-state synthesis, high sintering temperature above 1200 °C and long duration are required, which led to loss of volatile materials and formation of impurities at the grain boundaries. This hampers the total ionic conductivity of NZSP to be in the range of 10-4 S cm-1. Herein, we have reduced both the sintering temperature and time of the NZSP electrolyte by sintering the NZSP powders with different amounts of Na2SiO3 additive, which provides the liquid phase for the sintering process. The addition of 5 wt % Na2SiO3 has shown the highest total ionic conductivity of 1.45 mS cm-1 at room temperature. A systematic study of the effect of Na2SiO3 on the microstructure and electrical properties of the NZSP electrolyte is conducted by the structural study with the help of morphological and chemical observations using X-ray diffraction (XRD), scanning electron microscopy, and using focused ion-beam-time of flight-secondary ion mass spectroscopy. The XRD results revealed that cations from Na2SiO3 diffused into the bulk change the stoichiometry of NZSP, leading to an enlarged bottleneck area and hence lowering activation energy in the bulk, which contributes to the increment of the bulk ion conductivity, as indicated by the electrochemical impedance spectroscopy result. In addition, higher density and better microstructure contribute to improved grain boundary conductivity. More importantly, this study has achieved a highly ionic conductive NZSP only by facile addition of Na2SiO3 into the NZSP powder prior to the sintering stage.

5.
ACS Appl Mater Interfaces ; 11(23): 20895-20904, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31117464

ABSTRACT

All-solid-state lithium metal batteries (ASSLiMB) have been considered as one of the most promising next-generation high-energy storage systems that replace liquid organic electrolytes by solid-state electrolytes (SSE). Among many different types of SSE, NASICON-structured Li1+ xAl xGe2- x(PO3)4 (LAGP) shows high a ionic conductivity, high stability against moisture, and wide working electrochemical windows. However, it is unstable when it is in contact with molten Li, hence largely limiting its applications in ASSLiMB. To solve this issue, we have studied reaction processes and mechanisms between LAGP and molten Li, based on which a failure mechanism is hence proposed. With better understanding the failure mechanism, a thin thermosetting Li salt polymer, P(AA- co-MA)Li, layer is coated on the bare LAGP pellet before contacting with molten Li. To further increase the ionic conductivity of P(AA- co-MA)Li, LiCl is added in P(AA- co-MA)Li. A symmetric cell of Li/interface/LAGP/interface/Li is prepared using molten Li-Sn alloy and galvanically cycled at current densities of 15, 30, and 70 µA cm-2 for 100 cycles, showing stable low overpotentials of 0.036, 0.105, and 0.257 V, respectively. These electrochemical results demonstrate that the interface coating of P(AA- co-MA)Li can be an effective method to avoid an interfacial reaction between the LAGP electrolyte and molten Li.

SELECTION OF CITATIONS
SEARCH DETAIL
...