Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2312116, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446107

ABSTRACT

Flexible zinc-ion batteries have garnered significant attention in the realm of wearable technology. However, the instability of hydrogel electrolytes in a wide-temperature range and uncontrollable side reactions of the Zn electrode have become the main problems for practical applications. Herein, N,N-dimethylformamide (DMF) to design a binary solvent (H2 O-DMF) is introduced and combined it with polyacrylamide (PAM) and ZnSO4 to synthesize a hydrogel electrolyte (denoted as PZD). The synergistic effect of DMF and PAM not only guides Zn2+ deposition on Zn(002) crystal plane and isolates H2 O from the Zn anode, but also breaks the hydrogen bonding network between water to improve the wide-temperature range stability of hydrogel electrolytes. Consequently, the symmetric cell utilizing PZD can stably cycle over 5600 h at 0.5 mA cm- 2 @0.5 mAh cm-2 . Furthermore, the Zn//PZD//MnO2 full cell exhibits favorable wide-temperature range adaptability (for 16000 cycles at 3 A g-1 under 25 °C, 750 cycles with 98 mAh g-1 at 0.1 A g-1 under -20 °C) and outstanding mechanical properties (for lighting up the LEDs under conditions of pressure, bending, cutting, and puncture). This work proposes a useful modification for designing a high-performance hydrogel electrolyte, which provides a reference for investigating the practical flexible aqueous batteries.

2.
ACS Nano ; 17(22): 23181-23193, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956093

ABSTRACT

The violent side reactions of Zn metal in aqueous electrolyte lead to sharp local-pH fluctuations at the interface, which accelerate Zn anode breakdown; thus, the development of an optimization strategy to accommodate a wide pH range is particularly critical for improving aqueous Zn metal batteries. Herein, we report a pH-adaptive electric double layer (EDL) tuned by glycine (Gly) additive with pH-dependent ionization, which exhibits excellent capability to stabilize Zn anodes in wide-pH aqueous electrolytes. It is discovered that a Gly-ionic EDL facilitates the directed migration of charge carriers in both mildly acidic and alkaline electrolytes, leading to the successful suppression of local saturation. It is worth mentioning that the regulation effect of the additive concentration on the inner Helmholtz plane (IHP) structure of Zn electrodes is clarified in depth. It is revealed that the Gly additives without dimerization can develop orderly and dense vertical adsorption within the IHP to effectively reduce the EDL repulsive force of Zn2+ and isolate H2O from the anode surface. Consequently, they Zn anode with tunable EDL exhibits superior electrochemical performance in a wide range of pH and temperature, involving the prodigious cycle reversibility of 7000 h at Zn symmetric cells with ZnSO4-Gly electrolytes and an extended lifespan of 50 times in Zn symmetric cells with KOH-Gly electrolytes. Moreover, acidic Zn powder||MnO2 pouch cells, and alkaline high-voltage Zn||Ni0.8Co0.1Mn0.1O2 cells, and Zn||NiCo-LDH cells also deliver excellent cycling reversibility. The tunable EDL enables the ultrahigh depth of discharge (DOD) of 93%. This work elucidates the design of electrolyte additives compatible in a wide range of pH and temperature, which might cause inspiration in the fields of practical multiapplication scenarios for Zn anodes.

3.
Adv Sci (Weinh) ; 9(21): e2201433, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35618481

ABSTRACT

Aqueous Zn-ion batteries (AZIBs) have been recognized as promising energy storage devices due to their high theoretical energy density and cost-effectiveness. However, side reactions and Zn dendrite generation during cycling limit their practical application. Herein, ammonium acetate (CH3 COONH4 ) is selected as a trifunctional electrolyte additive to enhance the electrochemical performance of AZIBs. Research findings show that NH4 + (oxygen ligand) and CH3 COO- (hydrogenligand) with preferential adsorption on the Zn electrode surface can not only hinder Zn anode directly contact with active H2 O, but also regulate the pH value of the electrolyte, thus suppressing the parasitic reactions. Additionally, the formed SEI is mainly consisted of Zn5 (CO3 )2 (OH)6 with a high Zn2+ transference number, which could achieve a dendrite-free Zn anode by homogenizing Zn deposition. Consequently, the Zn||Zn symmetric batteries with CH3 COONH4 -based electrolyte can operate steadily at an ultrahigh current density of 40 mA cm-2 with a cumulative capacity of 6880 mAh cm-2 , especially stable cycling at -10 °C. The assembled Zn||MnO2 full cell and Zn||activated carbon capacitor also deliver prominent electrochemical reversibility. This work provides unique understanding of designing multi-functional electrolyte additive and promotes a long lifespan at ultrahigh current density for AZIBs.

4.
J Phys Chem Lett ; 12(44): 10746-10752, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34714073

ABSTRACT

The application of CsPbCl3 perovskite is limited by the low photoluminescence quantum yield (PLQY), weak luminescence, and unpromising stability. Doping impurity ions has been considered as an effective strategy to tune the optoelectronic performances of perovskite. In this work, heterovalent Ti3+ ions are successfully doped into CsPbCl3 nanocrystals. It is found that Ti3+ ion doping could effectively improve the photoluminescence (PL) performance of CsPbCl3 nanocrystals. Density functional theory (DFT) calculations reveal that Ti3+ ions could introduce more band-edge states around the conduction band minimum of CsPbCl3, which is conducive to release electrons into conduction band. Furthermore, Ti3+ ion doping could inhibit the Cl vacancy concentration in CsPbCl3 and prevent the in-gap state caused by Cl vacancy. Notably, the stability of CsPbCl3 perovskite is greatly improved through Ti3+ ion doping. This work provides a new perspective for improving the optoelectronic properties of all-inorganic perovskites through heterovalent metal ion doping.

5.
Inorg Chem ; 59(1): 661-668, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31851500

ABSTRACT

Luminescence performance and photoisomerization control of sensitized energy transfer in a series of Eu(acac)3De complexes that contain photochromic diarylethene (De) as the ligand are studied by theoretical methods. Both the open-ring and closed-ring isomers exhibit a consistent coordination mode between the EuIII ion and De. An unneglected weak interaction originating from electrostatic attraction is found in the region of the coordinate bond Eu-N. The open-ring isomer has higher triplet energy levels than 5D1 and 5D0 of the EuIII ion, which facilitates forward energy transfer from De to the EuIII ion. The closed-ring isomer, for the extended conjugated system formed in cyclization, has a much lower triplet energy level than 5D0 of the EuIII ion. The energy-gap deficit makes energy transfer unavailable. By utilization of this phenomenon, regulation of energy transfer and reversible on/off luminescence switching of the europium(III) complex can be achieved. The forward and backward energy-transfer rates in different channels are also calculated for the series of complexes. A statistics diagram is obtained to exhibit the change trend of energy-transfer rates in the forward and backward directions as a function of the triplet energy level, which indicates the contribution of different channels to energy transfer in each level region and figures out that the optimal triplet energy level should be in the range of 21740-19532 cm-1.

6.
Chemphyschem ; 21(1): 51-58, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31696633

ABSTRACT

Rare-earth (RE) doped zinc oxides (ZnO) are regarded as promising materials for application in versatile color-tuned devices. However, the understanding of underlying luminescence mechanism and the rule of 4 f-related electronic transition is still limited, which is full of significance for the exploration of advanced RE-based ZnO phosphors. Thus, a series of ZnO : RE (RE=Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb) phosphors have been investigated by means of first-principles calculations. Meanwhile, we also consider the effect of native defects (VO , VZn ) on the luminescence of ZnO : RE phosphors. Accordingly, four types of electric-dipole allowed transition processes are figured out in ZnO : RE family. Additionally, we manifest that the VO can further improve the luminescent performance of ZnO : RE phosphors, and give insightful guidance to design desired RE-based ZnO materials with excellent luminescence.

7.
Crit Rev Anal Chem ; 48(1): 47-65, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-28857621

ABSTRACT

Chemical oxygen demand (COD) is a critical analytical parameter for water quality assessment. COD represents the degree of organic pollution in water bodies. However, the standard analytical methods for COD are time-consuming and possess low oxidation efficiency, chloride interference, and severe secondary pollution. Works performed during the last two decades have resulted in several technologies, including modified standard methods (e.g., microwave-assisted method) and new technologies or methods (e.g., electro- and photo-oxidative methods based on advanced oxidation processes) that are less time-consuming, environment friendly, and more reliable. This review is devoted in analyzing the technical features of the principal methods described in the literature to compare their performances (i.e., measuring window, reliability, and robustness) and identify the advantages and disadvantages of each method.


Subject(s)
Biological Oxygen Demand Analysis , Water Pollution, Chemical/analysis
8.
Phys Chem Chem Phys ; 18(42): 29591-29599, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27752661

ABSTRACT

In this work, we designed three dyes (Ru1, Ru2, and Ru3) by modifying the square-planar quadridentate ligand of the experimental Ru(ii) complex K1, [RuL(trans-NCS)2] with L = dimethyl-6,60-bis(methyl-2-pyridylamino)-2,20-bipyridine-4,40-dicarboxylate, from a theoretical viewpoint. As is known, K1 shows obvious advantages over the famous dye N749 in light absorption ability because of its highly conjugated ancillary ligands. Density functional theory and time-dependent density functional theory methods were used to determine the geometrical structures, electronic structures and absorption spectra of the dye complexes. A quantum dynamics method in conjunction with extended Hückel theory was used to simulate the interfacial electron transfer process at the dye-TiO2 interface. The calculated results suggest that Ru1, which contains arylmethane groups, presents improved light absorption and efficient interfacial electron transfer compared with the reference dye K1. We also verified that the position of the anchoring carboxylic acid groups could largely guide the rate of interfacial electron transfer. Ru3, whose anchoring groups are attached to pyridine rings, would have significantly faster interfacial electron transfer than Ru2, whose anchoring groups are attached to the pyrrole ligands; this is because varying the position of the anchoring group results in a difference in the extent of electron donor-acceptor orbital interactions. We expect that the current study will provide some theoretical guidelines for the experimental synthesis of novel Ru(ii) complex dyes.

9.
J Biol Chem ; 289(46): 32303-32315, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25266727

ABSTRACT

A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.


Subject(s)
Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/metabolism , Streptococcal Infections/microbiology , Streptococcus pyogenes/enzymology , Animals , Bacterial Proteins/metabolism , Base Sequence , Cell Membrane/microbiology , Computational Biology , Exotoxins/metabolism , Female , Genetic Complementation Test , Histidine Kinase , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Molecular Sequence Data , Neutrophils/microbiology , Point Mutation , Polysaccharide-Lyases/metabolism , Polysaccharides/metabolism , Recombinant Proteins/metabolism , Repressor Proteins/metabolism , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...