Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 7(5): 1435-8, 2007 May.
Article in English | MEDLINE | ID: mdl-17417913

ABSTRACT

We report a new biphasic crystalline wurtzite/zinc-blende homostructure in gallium nitride nanowires. Cathodoluminescence was used to quantitatively measure the wurtzite and zinc-blende band gaps. High-resolution transmission electron microscopy was used to identify distinct wurtzite and zinc-blende crystalline phases within single nanowires through the use of selected area electron diffraction, electron dispersive spectroscopy, electron energy loss spectroscopy, and fast Fourier transform techniques. A mechanism for growth is identified.

2.
J Chem Phys ; 126(6): 064704, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17313235

ABSTRACT

The fundamentals of phase separations of single-crystal III-V nitride nanowires grown by self-catalytic chemical vapor deposition method have been studied. Experimental tools, such as high resolution transmission electron microscopy and scanning electron microscopy, have been used to characterize the nanowires. The study indicates that nanowires with diameters exceeding about 100 nm undergo phase transitions and/or crystal structure deterioration. The study highlights a relationship between the crystal structure and the kinetics of growth of nanowires.

3.
J Chem Phys ; 124(6): 64714, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16483236

ABSTRACT

The strength and versatility of a chemical-vapor deposition technique for thin, long, uniform, single-crystal, good-quality nanowire growth, without the use of template, have been described. Remarkably, while the full width at half maximum of a high-quality GaN thin film is 4 meV, that of a GaN whisker is 9 meV, which confirms high quality of the grown whiskers and nanowires. The versatility of the method is reflected by its ability to produce II-VI and III-V binary, ternary, and even, for the first time, quaternary nanowires in a controlled manner. The same versatility enables the realization of both cubic and hexagonal phases of nanowires and nanotubes. Chemical-vapor deposition technique generally makes use of highly poisonous arsine and phosphine for the synthesis of As- and P-based films. The present one is free from this shortcoming; it can produce As- and P-based nanowires without the use of these poisonous gases. A notable feature of the method is that properties of nanowires thus synthesized depend strongly on their shape, size, and geometry, and that certain growth conditions can only lead to such shapes and sizes.

SELECTION OF CITATIONS
SEARCH DETAIL
...