Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27319-27328, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38744717

ABSTRACT

Photoreduction of carbon dioxide (CO2) into fuels presents a promising approach to mitigate global warming and energy crises. Halide perovskite nanocrystals (NCs) with prominent optoelectronic properties have triggered substantial attention as photocatalysts but are limited by the charge recombination and instability. Here, we develop stable CsPbBr3/titania microspheres (TMs) by in situ growth of CsPbBr3 NCs inside mesoporous TMs through solid-state sintering, which significantly improves the stability of perovskite NCs, making them applicable in water with efficient CO2 photoreduction performance. Notably, the CsPbBr3/TMs demonstrates a 6.73- and 9.23-fold increase in the rate of CH4 production compared to TMs and CsPbBr3, respectively. The internal electric field facilitates S-scheme charge transfer, enhancing the separation of electron-hole pairs, as evidenced by X-ray photoelectron spectroscopy and electron paramagnetic resonance analysis, which is pivotal for the selective photoreduction of CO2. These insights pave the way for the design of CsPbBr3-based photocatalysts with superior efficiency and stability.

2.
Small ; : e2309902, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38402427

ABSTRACT

Silica is a promising shell coating material for colloidal nanoparticles due to its excellent chemical inertness and optical transparency. To encapsulate high-quality colloidal nanocrystals with silica shells, the silane coupling hydrolysis is currently the most effective approach. However, this reaction requires water, which often adversely affects the intrinsic physicochemical properties of nanocrystals. Achieving a damage-free silica encapsulation process to nanocrystals by hydrolysis is a huge challenge. Here, a novel strategy is developed to coat colloidal nanocrystals with a denser silica shell via a proactively water-generating reaction at high temperature. In this work, water molecules are continuously and proactively released into the reaction system through the amidation reaction, followed by in situ hydrolysis of silane, completely avoiding the impacts of water on nanocrystals during the silica coating process. In this work, water sensitive perovskite nanocrystals (CsPbBr3 ) are selected as the typical colloidal nanocrystals for silica coating. Notably, this high-temperature in situ encapsulation technology greatly improves the optical properties of nanocrystals, and the silica shells exhibit a denser structure, providing nanocrystals with better protection. This method overcomes the challenge of the influence of water on nanocrystals during the hydrolysis process, and provides an important reference for the non-destructive encapsulation of colloidal nanocrystals.

3.
Chem Sci ; 14(45): 13119-13125, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38023521

ABSTRACT

The interface defects of core-shell colloidal quantum dots (QDs) affect their optoelectronic properties and charge transport characteristics. However, the limited available strategies pose challenges in the comprehensive control of these interface defects. Herein, we introduce a versatile strategy that effectively addresses both surface and interface defects in QDs through simple post-synthesis treatment. Through the combination of fine chemical etching methods and spectroscopic analysis, we have revealed that halogens can diffuse within the crystal structure at elevated temperatures, acting as "repairmen" to rectify oxidation and significantly reducing interface defects within the QDs. Under the guidance of this protocol, InP core/shell QDs were synthesized by a hydrofluoric acid-free method with a full width at half-maximum of 37.0 nm and an absolute quantum yield of 86%. To further underscore the generality of this strategy, we successfully applied it to CdSe core/shell QDs as well. These findings provide fundamental insights into interface defect engineering and contribute to the advancement of innovative solutions for semiconductor nanomaterials.

4.
Small ; 19(44): e2304829, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37403273

ABSTRACT

Owing to outstanding optoelectronic properties, lead halide perovskite nanocrystals (PNCs) are considered promising emitters for next-generation displays. However, the development of pure blue (460-470 nm) perovskite nanocrystal light-emitting diodes (PNC-LEDs), which correspond to the requirements of Rec. 2020 standard, lag far behind that of their green and red counterparts. Here, pure blue CsPb(Br/Cl)3 nanocrystals with remarkable optical performance are demonstrated by a facile fluorine passivation strategy. Prominently, the fluorine passivation on halide vacancies and strong bonding of Pb-F intensely enhance crystal structure stability and inhibit "particle talking" behaviors under both thermal and electrical conditions. Fluorine-based PNCs with high resistance of luminescence thermal quenching retain 70% of photoluminescent intensity when heated to 343 K, which can be attributed to the elevated activation energy for carrier trapping and unchanged grain size. Fluorine-based PNC-LEDs also exhibit stable pure blue electroluminescence (EL) emission with sevenfold promoted luminance and external quantum efficiencies (EQEs), where the suppression of ion migration is further evidenced by a lateral structure device with applied polarizing potential.

5.
ACS Energy Lett ; 8(4): 1795-1802, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37090166

ABSTRACT

Multicomponent systems consisting of lead halide perovskite nanocrystals (CsPbX3-NCs, X = Br, I) grown inside mesoporous silica nanospheres (NSs) with selectively sealed pores combine intense scintillation and strong interaction with ionizing radiation of CsPbX3 NCs with the chemical robustness in aqueous environment of silica particles, offering potentially promising candidates for enhanced radiotherapy and radio-imaging strategies. We demonstrate that CsPbX3 NCs boost the generation of singlet oxygen species (1O2) in water under X-ray irradiation and that the encapsulation into sealed SiO2 NSs guarantees perfect preservation of the inner NCs after prolonged storage in harsh conditions. We find that the 1O2 production is triggered by the electromagnetic shower released by the CsPbX3 NCs with a striking correlation with the halide composition (I3 > I3-x Br x > Br3). This opens the possibility of designing multifunctional radio-sensitizers able to reduce the local delivered dose and the undesired collateral effects in the surrounding healthy tissues by improving a localized cytotoxic effect of therapeutic treatments and concomitantly enabling optical diagnostics by radio imaging.

6.
Nanoscale ; 15(12): 5720-5725, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36880574

ABSTRACT

Perovskite nanocrystals have attracted much attention due to their unique optical and electronic properties. Much progress has also been made in the development of light-emitting diodes based on perovskite nanocrystals in the past years. However, compared with the widely reported opaque perovskite nanocrystal light-emitting diodes, semitransparent perovskite nanocrystal light-emitting diodes are rarely studied, which affects the potential application of perovskite nanocrystals in the translucent display field in the future. Here, poly[(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN), a conjugated polymer, was used as an electron transport layer to fabricate the inverted opaque and semitransparent perovskite light-emitting diodes. The maximum external quantum efficiency and luminance were improved from 0.13% and 1041 cd m-2 to 2.07% and 12 540 cd m-2, respectively, through device optimization in opaque light-emitting diodes. The corresponding semitransparent device also demonstrated high transmittance (average 61% from 380 to 780 nm) and high brightness of 1619 and 1643 cd m-2 for the bottom and top sides, respectively.

7.
Nanomaterials (Basel) ; 12(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432331

ABSTRACT

Plentiful research of InP semiconductor quantum dots (QDs) has been launched over the past few decades for their excellent photoluminescence properties and environmentally friendly characteristics in various applications. However, InP QDs show inferior photostability because they are extremely sensitive to the ambient environment. In this study, we propose a novel method to enhance the photostability of InP/ZnSe/ZnS QDs by doping zirconium into the ZnS layer. We certify that Zr can be oxidized to Zr oxides, which can prevent the QDs from suffering oxidation during light irradiation. The InP/ZnSe/ZnS:Zr QDs maintained 78% of the original photoluminescence quantum yields without significant photodegradation under the irradiation of LED light (450 nm, 3.0 W power intensity) for 14 h, while conventional InP/ZnSe/ZnS QDs dramatically decreased to 29%.

8.
Angew Chem Int Ed Engl ; 61(30): e202205463, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35543285

ABSTRACT

Sn-based perovskites are the most promising alternative materials for Pb-based perovskites to address the toxicity problem of lead. However, the development of SnII -based perovskites has been hindered by their extreme instability. Here, we synthesized efficient and stable lead-free Cs4 SnBr6 perovskite by using SnF2 as tin source instead of easily oxidized SnBr2 . The SnF2 configures a fluorine-rich environment, which can not only suppress the oxidation of Sn2+ in the synthesis, but also construct chemically stable Sn-F coordination to hinder the electron transfer from Sn2+ to oxygen within the long-term operation process. The SnF2 -derived Cs4 SnBr6 perovskite shows a high photoluminescence quantum yield of 62.8 %, and excellent stability against oxygen, moisture, and light radiation for 1200 h, representing one of the most stable lead-free perovskites. The results pave a new pathway to enhance the optical properties and stability of lead-free perovskite for high-performance light emitters.

9.
Chem Sci ; 13(13): 3719-3727, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432894

ABSTRACT

Lead halide perovskite nanocrystals as promising ultrapure emitters are outstanding candidates for next-generation light-emitting diodes (LEDs) and display applications, but the thermal quenching behavior of light emission has severely hampered their real-world applications. Here, we report an anion passivation strategy to suppress the emission thermal quenching behavior of CsPbBr3 perovskite nanocrystals. By treating with specific anions (such as SO4 2-, OH-, and F- ions), the corresponding wide-bandgap passivation layers, PbSO4, Pb(OH)2, and PbF2, were obtained. They not only repair the surface defects of CsPbBr3 nanocrystals but also stabilize the phase structure of the inner CsPbBr3 core by constructing a core-shell like structure. The photoluminescence thermal resistance experiments show that the treated sample could preserve 79% of its original emission intensity up to 373 K, far superior to that (17%) of pristine CsPbBr3. Based on the thermally stable CsPbBr3 nanocrystals, we achieved temperature-stable white LED devices with a stable electroluminescence spectrum, color gamut and color coordinates in thermal stress tests (up to 373 K).

10.
ACS Appl Mater Interfaces ; 14(17): 19697-19703, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35438955

ABSTRACT

Artificial intelligence offers new opportunities for translucent displays. However, achieving translucent light-emitting diodes (LEDs) with high efficiency and high color purity remains a challenge. Here, we propose a strategy of using an alkali metal/inert metal (calcium/silver) bilayer metal electrode as a top electrode and perovskite nanocrystals as an emitter layer in the device structure, which allows us to not only fabricate excellent opaque LEDs but also manufacture highly efficient semitransparent LEDs with high color purity, total brightness (over 7000 cd m-2), total external quantum efficiency (over 12%), and 56% transmittance around 520 nm. This is the highest external quantum efficiency report about semitransparent LED based on perovskite materials or inorganic quantum dots so far, which presents great application potential in the field of translucent display with high color purity and wide color gamut.

11.
PeerJ Comput Sci ; 7: e436, 2021.
Article in English | MEDLINE | ID: mdl-33977128

ABSTRACT

Deep learning is one of the most advanced forms of machine learning. Most modern deep learning models are based on an artificial neural network, and benchmarking studies reveal that neural networks have produced results comparable to and in some cases superior to human experts. However, the generated neural networks are typically regarded as incomprehensible black-box models, which not only limits their applications, but also hinders testing and verifying. In this paper, we present an active learning framework to extract automata from neural network classifiers, which can help users to understand the classifiers. In more detail, we use Angluin's L* algorithm as a learner and the neural network under learning as an oracle, employing abstraction interpretation of the neural network for answering membership and equivalence queries. Our abstraction consists of value, symbol and word abstractions. The factors that may affect the abstraction are also discussed in the paper. We have implemented our approach in a prototype. To evaluate it, we have performed the prototype on a MNIST classifier and have identified that the abstraction with interval number 2 and block size 1 × 28 offers the best performance in terms of F1 score. We also have compared our extracted DFA against the DFAs learned via the passive learning algorithms provided in LearnLib and the experimental results show that our DFA gives a better performance on the MNIST dataset.

SELECTION OF CITATIONS
SEARCH DETAIL
...