Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychopharmacology ; 49(1): 227-245, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37673965

ABSTRACT

Neurotrophic factors are a family of growth factors that modulate cellular growth, survival, and differentiation. For many decades, it has been generally believed that a lack of neurotrophic support led to the decreased neuronal synaptic plasticity, death, and loss of non-neuronal supportive cells seen in neuropsychiatric disorders. Traditional psychiatric medications that lead to immediate increases in neurotransmitter levels at the synapse have been shown also to elevate synaptic neurotrophic levels over weeks, correlating with the time course of the therapeutic effects of these drugs. Recent advances in psychiatric treatments, such as ketamine and psychedelics, have shown a much faster onset of therapeutic effects (within minutes to hours). They have also been shown to lead to a rapid release of neurotrophins into the synapse. This has spurred a significant shift in understanding the role of neurotrophins and how the receptor tyrosine kinases that bind neurotrophins may work in concert with other signaling systems. In this review, this renewed understanding of synaptic receptor signaling interactions and the clinical implications of this mechanistic insight will be discussed within the larger context of the well-established roles of neurotrophic factors in psychiatric disorders and treatments.


Subject(s)
Mental Disorders , Nerve Growth Factors , Humans , Nerve Growth Factors/metabolism , Neurons/metabolism , Signal Transduction , Synapses/metabolism , Mental Disorders/drug therapy , Mental Disorders/metabolism , Brain-Derived Neurotrophic Factor/metabolism
2.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 5070-5086, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35895642

ABSTRACT

We consider a new problem of adapting a human mesh reconstruction model to out-of-domain streaming videos, where the performance of existing SMPL-based models is significantly affected by the distribution shift represented by different camera parameters, bone lengths, backgrounds, and occlusions. We tackle this problem through online adaptation, gradually correcting the model bias during testing. There are two main challenges: First, the lack of 3D annotations increases the training difficulty and results in 3D ambiguities. Second, non-stationary data distribution makes it difficult to strike a balance between fitting regular frames and hard samples with severe occlusions or dramatic changes. To this end, we propose the Dynamic Bilevel Online Adaptation algorithm (DynaBOA). It first introduces the temporal constraints to compensate for the unavailable 3D annotations and leverages a bilevel optimization procedure to address the conflicts between multi-objectives. DynaBOA provides additional 3D guidance by co-training with similar source examples retrieved efficiently despite the distribution shift. Furthermore, it can adaptively adjust the number of optimization steps on individual frames to fully fit hard samples and avoid overfitting regular frames. DynaBOA achieves state-of-the-art results on three out-of-domain human mesh reconstruction benchmarks.

3.
Cancer Cell Int ; 22(1): 366, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36419080

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the deadliest cancers and is mainly developed from chronic liver diseases such as hepatitis-B infection-associated liver cirrhosis (LC). The progression from LC to HCC makes the detection of diagnostic biomarkers to be challenging. Hence, there have been constant efforts to improve on identifying the critical and predictive changes accompanying the disease progression. METHODS: In this study, we looked to using the mass spectrometry mediated spatial metabolomics technique to simultaneous examine hundreds of metabolites in an untargeted fashion. Additionally, metabolic profiles were compared between six subregions within the HCC tissue to collect spatial information. RESULTS: Through those metabolites, altered metabolic pathways in LC and HCC were identified. Specifically, the amino acid metabolisms and the glycerophospholipid metabolisms experienced the most changes. Many of the altered metabolites and metabolic pathways were able to be connected through the urea cycle. CONCLUSIONS: The identification of the key metabolites and pathways can expand our knowledge on HCC metabolic reprogramming and help us exam potential biomarkers for earlier detection of the malignant disease progression.

4.
Front Oncol ; 12: 891018, 2022.
Article in English | MEDLINE | ID: mdl-35924152

ABSTRACT

Metabolic heterogeneity of cancer contributes significantly to its poor treatment outcomes and prognosis. As a result, studies continue to focus on identifying new biomarkers and metabolic vulnerabilities, both of which depend on the understanding of altered metabolism in cancer. In the recent decades, the rise of mass spectrometry imaging (MSI) enables the in situ detection of large numbers of small molecules in tissues. Therefore, researchers look to using MSI-mediated spatial metabolomics to further study the altered metabolites in cancer patients. In this review, we examined the two most commonly used spatial metabolomics techniques, MALDI-MSI and DESI-MSI, and some recent highlights of their applications in cancer studies. We also described AFADESI-MSI as a recent variation from the DESI-MSI and compare it with the two major techniques. Specifically, we discussed spatial metabolomics results in four types of heterogeneous malignancies, including breast cancer, esophageal cancer, glioblastoma and lung cancer. Multiple studies have effectively classified cancer tissue subtypes using altered metabolites information. In addition, distribution trends of key metabolites such as fatty acids, high-energy phosphate compounds, and antioxidants were identified. Therefore, while the visualization of finer distribution details requires further improvement of MSI techniques, past studies have suggested spatial metabolomics to be a promising direction to study the complexity of cancer pathophysiology.

5.
Mol Cell Endocrinol ; 546: 111577, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35121076

ABSTRACT

The homeodomain transcription factor SIX3 is a known regulator of eye, nose, and forebrain development, and has recently been implicated in female reproduction. Germline heterozygosity of SIX3 is sufficient to cause subfertility, but the cell populations that mediate this role are unknown. The neuropeptide kisspeptin is a critical component of the reproductive axis and plays roles in sexual maturation, ovulation, and the maintenance of gonadotropin secretion. We used Cre-Lox technology to remove Six3 specifically from kisspeptin neurons in mice to test the hypothesis that SIX3 in kisspeptin neurons is required for reproduction. We found that loss of Six3 in kisspeptin neurons causes subfertility and estrous cycle irregularities in females, but no effect in males. Overall, we find that SIX3 expression in kisspeptin neurons is an important contributor to female fertility.


Subject(s)
Eye Proteins , Homeodomain Proteins , Infertility , Kisspeptins , Nerve Tissue Proteins , Neurons , Animals , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Gonadotropin-Releasing Hormone/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Male , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Reproduction/physiology , Homeobox Protein SIX3
6.
Endocrinology ; 162(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34529765

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common reproductive disorder characterized by elevated androgens and antimüllerian hormone (AMH). These hormones remain elevated throughout pregnancy, and potential effects of hormone exposure on offspring from women with PCOS remain largely unexplored. Expanding on recent reports of prenatal AMH exposure in mice, we have fully characterized the reproductive consequences of prenatal AMH (pAMH) exposure throughout the lifespan of first- and second-generation offspring of both sexes. We also sought to elucidate mechanisms underlying pAMH-induced reproductive effects. There is a known reciprocal relationship between AMH and androgens, and in PCOS and PCOS-like animal models, androgen feedback is dysregulated at the level of the hypothalamus. Kisspeptin neurons express androgen receptors and play a critical role in sexual development and function. We therefore hypothesized that pAMH-induced reproductive phenotypes would be mediated by androgen signaling at the level of kisspeptin cells. We tested the pAMH model in kisspeptin-specific androgen receptor knockout (KARKO) mice and found that virtually all pAMH-induced phenotypes assayed are eliminated in KARKO offspring compared to littermate controls. By demonstrating the necessity of androgen receptor in kisspeptin cells to induce pAMH phenotypes, we have advanced understanding of the interactions between AMH and androgens in the context of prenatal exposure, which could have significant implications for children of women with PCOS.


Subject(s)
Anti-Mullerian Hormone/pharmacology , Prenatal Exposure Delayed Effects , Receptors, Androgen/physiology , Reproduction/drug effects , Animals , Brain/drug effects , Brain/metabolism , Female , Gonads/drug effects , Gonads/metabolism , Kisspeptins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Receptors, Androgen/metabolism
7.
Biol Psychiatry ; 85(3): 226-236, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30336931

ABSTRACT

BACKGROUND: Homeostatic plasticity in mesolimbic dopamine (DA) neurons plays an essential role in mediating resilience to social stress. Recent evidence implicates an association between stress resilience and projections from the locus coeruleus (LC) to the ventral tegmental area (VTA) (LC→VTA) DA system. However, the precise circuitry and molecular mechanisms of the homeostatic plasticity in mesolimbic DA neurons mediated by the LC→VTA circuitry, and its role in conferring resilience to social defeat stress, have not been described. METHODS: In a well-established chronic social defeat stress model of depression, using projection-specific electrophysiological recordings and optogenetic, pharmacological, and molecular profiling techniques, we investigated the functional role and molecular basis of an LC→VTA circuit in conferring resilience to social defeat stress. RESULTS: We found that LC neurons projecting to the VTA exhibit enhanced firing activity in resilient, but not susceptible, mice. Optogenetically mimicking this firing adaptation in susceptible mice reverses their depression-related behaviors, and induces reversal of cellular hyperactivity and homeostatic plasticity in VTA DA neurons projecting to the nucleus accumbens. Circuit-specific molecular profiling studies reveal that α1- and ß3-adrenergic receptors are highly expressed in VTA→nucleus accumbens DA neurons. Pharmacologically activating these receptors induces similar proresilient effects at the ion channel and cellular and behavioral levels, whereas antagonizing these receptors blocks the proresilient effect of optogenetic activation of LC→VTA circuit neurons in susceptible mice. CONCLUSIONS: These findings reveal a key role of the LC→VTA circuit in mediating homeostatic plasticity in stress resilience and reveal α1- and ß3-adrenergic receptors as new molecular targets for therapeutically promoting resilience.


Subject(s)
Locus Coeruleus/physiology , Receptors, Adrenergic, alpha-1/physiology , Receptors, Adrenergic, beta-3/physiology , Resilience, Psychological , Ventral Tegmental Area/physiology , Adrenergic alpha-1 Receptor Agonists/pharmacology , Adrenergic alpha-1 Receptor Antagonists/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Adrenergic beta-3 Receptor Antagonists/pharmacology , Animals , Behavior, Animal/physiology , Dopaminergic Neurons/physiology , Homeostasis/physiology , Locus Coeruleus/drug effects , Male , Mice , Neural Pathways/physiology , Neuronal Plasticity/physiology , Resilience, Psychological/drug effects , Stress, Psychological/physiopathology , Ventral Tegmental Area/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...