Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 745: 140970, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32731072

ABSTRACT

The topsoil cyanobacteria in biological soil crusts (BSCs) play a vital role in stabilizing soil surface of disturbed habitats in water and nutrient-poor ecosystems. Currently, artificial inoculation of BSCs is considered as an effective approach to restore habitats and accelerate ecosystem regeneration. Understanding the character of cyanobacterial communities is the necessary prerequisite to explore the artificial inoculation of BSCs. For this reason, cyanobacterial communities in BSCs were compared between two mid-latitute temperate deserts with distinct precipitation patterns. The results showed that Oscillatoriales and Nostocales dominated crusts in the Tengger desert with majority of rainfall in summer and early autumn while Oscillatoriales dominated crusts in the Kyzyl kum desert with more rainfall in winter and early spring. Moreover, filamentous Microcoleus vaginatus overwhelmingly dominated all the crusts in both deserts with Mastigocladopsis sp. and Chroococcidiopsis spp. as the dominant heterocystous cyanobacteria. Of note, genus Wilmottia kept a relative stable and high abundance in both deserts. The top two abundantly shared cyanobacteria (> 1% of total sequences) were M. vaginatus and Mastigocladopsis sp. in both deserts, while 16 genera with significant variances were found between the two deserts (P <0.05). Total variations of cyanobacterial communities across the deserts were largely explained by a combination of biotic factors (microbial biomass C and N) and abiotic factors (soil pH, soil water content, soil water holding capacity, and soil available potassium). Compared to better-developed crusts, cyanobacterial abundance was higher in cyanobacterial crusts. BSC type and/or geographic location significantly affected cyanobacterial Shannon diversity without significantly influencing species richness. Our data suggest that the basic and major groups (e.g. M. vaginatus, Wilmottia spp., Mastigocladopsis sp., and Chroococcidiopsis spp.), and the abundantly shared phylotypes which showed significant difference in cyanobacterial communities between deserts, should be focused on to further explore the artificial inoculation of BSCs in temperate drylands.


Subject(s)
Cyanobacteria , Soil , Cues , Desert Climate , Ecosystem , Soil Microbiology
2.
Ying Yong Sheng Tai Xue Bao ; 31(1): 35-44, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-31957378

ABSTRACT

To verify the accuracy of MODIS-NDVI data products in deserts and provide guidance for scientific management of desert grasslands in the context of climate change, we examined the responses of fractional vegetation cover (FVC) and normalized difference vegetation index (NDVI) to hydrothermal gradient in arid desert areas using unmanned aerial vehicle (UAV) remote sensing. In Alxa desert region of Inner Mongolia, GreenSeeker handheld spectrometer was used to obtain NDVI (NDVIR) of 100 sampling points. NDVI was extracted by MODIS-NDVI data products (NDVIM), and the accuracy of NDVIM was verified by NDVIR. FVC of each sampling point was obtained through unmanned aerial vehicle remote sensing (FVCU), which was used to examine the FVC that was retrieved by the pixel binary model (FVCM). In addition, combining meteorological data, we examined the responses of FVC and NDVI to hydrothermal gradient based on UAV remote sensing method. The results showed that MODIS-NDVI data products reflected the real NDVI in Alxa area with an accuracy of 84.2%, but NDVIM were 15.7% higher than the actual values. FVCM reflected the vegetation coverage of Alxa region with an accuracy of 83.1%, which were 14.8% lower than the real value. Effects of meteorological factors on NDVI was different, depending on the different acquisition methods. NDVI was affected not only by temperature and precipitation, but also by ground temperature, evaporation and the interaction between evaporation and ground temperature. Because of the different degree of atmospheric influence, NDVIM was more affected by ground temperature, evaporation and precipitation than NDVIR, while NDVIR was more affected by temperature than NDVIM. To examine the changes of vegetation coverage across hydrothermal gradient in desert area, we should consider not only precipitation and temperature, but also the interaction between evaporation, ground temperature and meteorological factors. The interaction between temperature and rainfall, evaporation and ground temperature, and between temperature and evaporation had greater impacts on FVCU.


Subject(s)
Meteorological Concepts , Remote Sensing Technology , China , Climate Change , Temperature
3.
Ying Yong Sheng Tai Xue Bao ; 22(4): 936-42, 2011 Apr.
Article in Chinese | MEDLINE | ID: mdl-21774315

ABSTRACT

A pot experiment was conducted to study the influence of different concentration (0, 50, 100, 200, and 400 mg kg(-1)) Ni and Cu on the growth, photosynthesis, and chlorophyll fluorescence characteristics of Peganum harmala seedlings. With increasing concentration Ni in the medium, the seedlings growth parameters, photosynthetic pigment content, net photosynthetic rate (P(n)), stomatal conductance (G(s)), transpiration rate (T(r)), maximal photochemical efficiency of PS II (F(v)/F(m)), quantum efficiency of electric transport of PS II (phi (PS II)), and coefficient of photochemical quenching (q(P)) of P. harmala decreased significantly, while the intercellular CO2 concentration (C(i)) and the coefficient of non-photochemical quenching (q(N)) were in adverse. The decrease of P(n) under Ni stress was mainly caused by non-stomatal limitation. At 50 mg kg(-1) Cu, the growth parameters, photosynthetic pigment content, P(n), G(s), T(r), C(i), F(v)/F(m), phi(PS II), and q(P) reached their peak values; at 100 mg kg(-1) Cu, the growth parameters, chlorophyll a and b contents, P(n), G(s), T(r), C(i), and F(v)/F(m) were still slightly higher than the control; while with the further increasing Cu concentration in the medium, all the test indices except q(N) tended to decrease. The decrease of P(n) under Cu stress was mainly caused by stomatal limitation.


Subject(s)
Chlorophyll/metabolism , Copper/toxicity , Nickel/toxicity , Peganum/physiology , Photosynthesis/drug effects , Fluorescence , Peganum/growth & development , Photosynthesis/physiology , Seedlings/drug effects , Seedlings/physiology , Soil Pollutants/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...