Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 373: 417-424, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30939424

ABSTRACT

The removal performance and mechanisms of diatrizoate (DTA), a typical iodinated contrast medium, from water by nano-sized zero-valent iron (nZVI) under aerobic conditions were investigated in this study. Reactive oxygen species (ROS) and transformation products were detected with electron spin resonance and liquid chromatography electrospray ionization tandem mass spectrometry, respectively. Furthermore, the effects of several operational parameters on DTA removal were illustrated. The results showed that nZVI had a much higher DTA removal ability compared to microscale zero-valent iron (mZVI) in the presence of oxygen. Moreover, the detection of ROS and I- as well as the analysis of intermediate products suggested a combination of oxidation and reduction pathways for DTA removal by nZVI under aerobic conditions. Additionally, a high dosage of nZVI and acidic conditions led to the enhancement of DTA removal, while nZVI aging, as well as chloride and nitrate ions in the solution, had negative effects on the degradation of DTA by nZVI in the presence of oxygen.

2.
J Hazard Mater ; 357: 235-243, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29890420

ABSTRACT

Carbon nanotubes (CNTs) could be directly used as metal-free catalysts for the reduction of nitroaromatics by sulfide in water, but their catalytic ability need a further improvement. This study evaluated the feasibility of surface modification through thermal and radiation pretreatments to enhance catalytic activity of CNTs on nitrobenzene reduction by sulfide. The results show that thermal treatment could effectively improve the catalytic behaviors of CNTs for the reduction of nitrobenzene by sulfide, where the optimum annealing temperature was 400 °C. However, plasma radiation pretreatment didn't result in an obvious improvement of the CNTs catalytic activity. Moreover, the possible reasons have been explored and discussed in the study. Additionally, the impacts of various operational parameters on nitrobenzene reduction catalyzed by the CNTs after an optimized surface modification were also evaluated. It was found that the rate of nitrobenzene removal by sulfide was positively correlated with CNTs doses in a range of 0.3-300 mg L-1; the optimum pH was around 8.0; higher temperature and sulfide concentration facilitated the reaction; and the presence of humic acid exhibited a negative effect on nitrobenzene reduction.

3.
Water Res ; 127: 32-40, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29031797

ABSTRACT

The study aimed at evaluating the influence of nano zero-valent iron (nZVI) on the activity of anaerobic granular sludge (AGS) from both macroscopic and microcosmic aspects using different methodologies. The tolerance response of AGS to nZVI was firstly investigated using short-term and long-term experiments, and also compared with anaerobic flocs. The Fe fate and distribution, the change of contents/structure of extracellular polymeric substances (EPS), and the variation of microbial community in the AGS after exposure to nZVI were further explored. Contrary to the anaerobic floc, insignificant inhibition of nZVI at dosage lower than 30 mmoL/L on the activity of AGS was observed. Additionally, the extra hydrogen gas released from the oxidation of nZVI was presumably suggested to stimulate the hydrogenotrophic methanogenesis process, resulting in 30% methane production enhancement when exposure to 30 mmoL/L nZVI. The microscopic analysis indicated that nZVI particles were mainly adsorbed on the surface of AGS in the form of iron oxides aggregation without entering into the interior of the granule, protecting most cells from contact damage. Moreover, surrounded EPS located outer surface of anaerobic granule could react with nZVI to accelerate the corrosion of nZVI and slow down H2 release from nZVI dissolution, thus further weakening the toxicity of nZVI to anaerobic microorganisms. The decrease in bacteria involved in glucose degradation and aceticlastic methanogens as well as the increase of hydrogenotrophic methanogens indicated a H2 mediated shift toward the hydrogenotrophic pathway enhancing the CH4 production.


Subject(s)
Iron/chemistry , Sewage/chemistry , Anaerobiosis , Bacteria/metabolism , Hydrogen/metabolism , Methane/metabolism , Nanoparticles/ultrastructure , Sewage/microbiology
4.
Chemosphere ; 177: 7-14, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28279903

ABSTRACT

The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × timereaction) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, Ea, induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (CODMn) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and CODMn concentrations contributed to the inactivation of T. tubifex.


Subject(s)
Chlorine/pharmacology , Disinfectants/pharmacology , Drinking Water , Oligochaeta/drug effects , Water Purification/methods , Animals , Biological Oxygen Demand Analysis , Disinfection/methods , Hydrogen-Ion Concentration , Kinetics , Nephelometry and Turbidimetry , Temperature , Ultraviolet Rays , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...