Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Vaccine ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824085

ABSTRACT

The conventional inactivated tetanus toxin plays an instrumental role in preventing tetanus. Nevertheless, the challenges associated with its production process, the potential for adverse reactions, and reduced effectiveness in vulnerable populations such as neonates and the elderly rise the need for a novel tetanus toxin vaccine. Recombinant subunit vaccine offer a viable solution, and the tetanus toxin fragment C (TTFC) is emerging as a promising candidate. In this study, through spontaneous isopeptide bond formation we conjugated the recombinant TTFC to self-assembled mi3 nanoparticle, which derived from an optimized KDPG aldolase, and generated the TTFC-mi3 protein nanoparticle vaccine. We found that TTFC-mi3 is stable, uniform spherical nanoparticles. Comparing with the free TTFC alone, TTFC-mi3 enhances the uptake and subsequent activation of dendric cells (DCs). In addition, a single dose of adjuvant-free TTFC-mi3 elicited a more rapid and potent protective immunity in mice. Moreover, TTFC-mi3 is of favorable safety in vitro and in vivo. Our findings indicate that TTFC-mi3 is a rapid-response, non-aluminum-adjuvanted vaccine against tetanus.

2.
Nanomicro Lett ; 16(1): 175, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639824

ABSTRACT

Metal-organic frameworks (MOFs) have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity, but the limited catalytic activity and stability has hampered their practical use in water splitting. Herein, we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs (donated as AE-CoNDA) to serve as efficient catalyst for water splitting. AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm-2 and a small Tafel slope of 62 mV dec-1 with excellent stability over 100 h. After integrated AE-CoNDA onto BiVO4, photocurrent density of 4.3 mA cm-2 is achieved at 1.23 V. Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p, which accounts for the fast kinetics and high activity. Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting.

3.
Chem Asian J ; 18(23): e202300847, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37842968

ABSTRACT

Aggregation-induced emission luminogens (AIEgens) in the second near-infrared region (NIR-II,1000-1700 nm) have shown tremendous potential as theragnostic probe for tumor multimodal diagnostic imaging and combined treatment owing to their programmable optical, structural and functional properties. Herein, we presented a radionuclide 177 Lu-labeled AIEgen, 177 Lu-2TT-oC6B dots, for NIR-II fluorescence and SPECT/CT imaging-guided tumor photothermal and radiopharmaceutical therapy. Intriguingly, 177 Lu-2TT-oC6B self-assembled into 10 nm dots, exhibited high NIR-II fluorescence quantum yield (QY, 1.34 %) and unprecedented photothermal conversion efficiency (PCE, 70.3 %) in vitro, furtherly performed extremely long blood circulation (T1/2 =52.4 h), persistent tumor accumulation and retention in tumor (NIR-II SNR=5.56; SPECT SNR=36.59) via intravenous administration in vivo. Furthermore, upon NIR light activation and 177 Lu irradiation, 177 Lu-2TT-oC6B demonstrated great application potential in synergistic photothermal/radiopharmaceutical tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Radiopharmaceuticals/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photothermal Therapy , Optical Imaging/methods , Multimodal Imaging , Nanoparticles/chemistry
4.
Adv Healthc Mater ; 12(29): e2301693, 2023 11.
Article in English | MEDLINE | ID: mdl-37285905

ABSTRACT

Cancer immunotherapy is a favorable strategy for facilitating anti-tumor immunity, but it shows limited benefits in clinical practice owing to the immunosuppressive tumor microenvironment. Pyroptosis shows great immunostimulatory effect on tumor, whereas the lack of pyroptotic inducer with imaging property has restricted its progress in tumor theranostics. Herein, a mitochondria-targeted aggregation-induced emission (AIE) luminogen (TPA-2TIN) with NIR-II emission is designed for highly efficient induction of tumor cell pyroptosis. The fabricated TPA-2TIN nanoparticles can be efficiently taken up by tumor cells and selectively accumulated in tumor for a long term observed by NIR-II fluorescence imaging. More importantly, the TPA-2TIN nanoparticles can effectively stimulate immune responses both in vitro and in vivo mediated by the mitochondrial dysfunctions and the subsequent activation of the pyroptotic pathway. Ultimately, the reversal of the immunosuppressive tumor microenvironment significantly enhances the immune checkpoint therapy. This study paves a new avenue for adjuvant immunotherapy of cancer.


Subject(s)
Nanoparticles , Neoplasms , Humans , Pyroptosis , Immunotherapy , Immunization , Mitochondria , Tumor Microenvironment , Neoplasms/therapy , Cell Line, Tumor
5.
ACS Appl Mater Interfaces ; 15(27): 32341-32351, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37379231

ABSTRACT

Promoting the catalyst performance for oxygen reduction reaction (ORR) in energy conversion devices through controlled manipulation of the structure of catalytic active sites has been a major challenge. In this work, we prepared Fe-N-C single-atom catalysts (SACs) with Fe-N5 active sites and found that the catalytic activity of the catalyst with shrinkable Fe-N5-C11 sites for ORR was significantly improved compared with the catalyst bearing normal Fe-N5-C12 sites. The catalyst C@PVI-(TPC)Fe-800, prepared by pyrolyzing an axial-imidazole-coordinated iron corrole precursor, exhibited positive shifted half-wave potential (E1/2 = 0.89 V vs RHE) and higher peak power density (Pmax = 129 mW/cm2) than the iron porphyrin-derived counterpart C@PVI-(TPP)Fe-800 (E1/2 = 0.81 V, Pmax = 110 mW/cm2) in 0.1 M KOH electrolyte and Zn-air batteries, respectively. X-ray absorption spectroscopy (XAS) analysis of C@PVI-(TPC)Fe-800 revealed a contracted Fe-N5-C11 structure with iron in a higher oxidation state than the porphyrin-derived Fe-N5-C12 counterpart. Density functional theory (DFT) calculations demonstrated that C@PVI-(TPC)Fe-800 possesses a higher HOMO energy level than C@PVI-(TPP)Fe-800, which can increase its electron-donating ability and thus help achieve enhanced O2 adsorption as well as O-O bond activation. This work provides a new approach to tune the active site structure of SACs with unique contracted Fe-N5-C11 sites that remarkably promote the catalyst performance, suggesting significant implications for catalyst design in energy conversion devices.

6.
Chem Asian J ; 18(11): e202300189, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37032315

ABSTRACT

Breast cancer has become a huge burden with continued rise of incidence and death rate worldwide. Various methods for diagnosis and therapy of breast cancer have met the challenges of lack of complete information about the tumor location and limited therapy efficacy. Although aggregation-induced emission luminogens (AIEgens) have shown great promise for various cancer treatment applications, they may be incompetent for deep-seated tumor diagnosis due to the limited penetration depth. Herein, we designed and prepared a radiolabeled AIEgen-based organic photothermal agent for bimodal PET/fluorescence imaging-guided breast tumor photothermal therapy. The prepared multifunctional nanoparticles (68 Ga-TPA-TTINC NPs) with NIR-II fluorescence, gamma irradiation and photothermal conversion property could be efficiently taken up by tumor cells and induce reactive oxygen species burst in vitro, further boosting the photothermal treatment of tumor in vivo. More importantly, the nanoprobe could target and clearly visualize 4T1 tumor xenografts through PET and NIR-II fluorescence imaging with high tumor/muscle ratio up to 4.8, which provides a promising tool and solution for breast tumor theranostics.


Subject(s)
Breast Neoplasms , Nanoparticles , Neoplasms , Humans , Female , Photothermal Therapy , Fluorescence , Theranostic Nanomedicine/methods , Neoplasms/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Phototherapy/methods , Optical Imaging/methods , Cell Line, Tumor
7.
Small ; 19(25): e2301164, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36919943

ABSTRACT

In recent years, growing concerns regarding energy efficiency and heat mitigation, along with the critical goal of carbon neutrality, have drawn human attention to the zero-energy-consumption cooling technique. Passive daytime radiative cooling (PDRC) can be an invaluable tool for combating climate change by dispersing ambient heat directly into outer space instead of just transferring it across the surface. Although significant progress has been made in cooling mechanisms, materials design, and application exploration, PDRC faces challenges regarding functionality, durability, and commercialization. Herein, a silica nanofiber aerogels (SNAs) functionalized poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-HFP)) membrane (SFP membrane), inspired by constructional engineering is constructed. As-prepared membranes with flexible network structure combined hierarchical structure design and practicability principal. As the host material for thermal comfort management (TCM) and versatile protection, the SFP membrane features a large surface area, porous structure, and a robust skeleton that can render excellent mechanical properties. Importantly, the SFP membrane can keep exceptional solar reflectivity (0.95) and strong mid-infrared emittance (0.98) drop the temperature to 12.5 °C below ambient and 96 W m-2 cooling power under typical solar intensities over 910 W m-2 . This work provides a promising avenue for high performance aerogel membranes that can be created for use in a wide variety of applications.

8.
Small ; 18(48): e2204912, 2022 12.
Article in English | MEDLINE | ID: mdl-36266964

ABSTRACT

The electrochemical conversion reaction, usually featured by multiple redox processes and high specific capacity, holds great promise in developing high-energy rechargeable battery technologies. However, the complete structural change accompanied by spontaneous atomic migration and volume variation during the charge/discharge cycle leads to electrode disintegration and performance degradation, therefore severely restricting the application of conventional conversion-type electrodes. Herein, latticed-confined conversion chemistry is proposed, where the "intercalation-like" redox behavior is realized on the electrode with a "conversion-like" high capacity. By delicately formulating the high-entropy compounds, the pristine crystal structure can be preserved by the inert lattice framework, thus enabling an ultra-high initial Coulombic efficiency of 92.5% and a long cycling lifespan over a thousand cycles after the quasistatic charge-discharge cycle. This lattice-confined conversion chemistry unfolds a ubiquitous insight into the localized redox reaction and sheds light on developing high-performance electrodes toward next-generation high-energy rechargeable batteries.


Subject(s)
Body Fluids , Electric Power Supplies , Electrodes , Entropy
9.
ChemMedChem ; 17(20): e202200472, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36068922

ABSTRACT

As an add-on drug approved for Parkinson's disease treatment, safinamide has multiple functions, such as selective and reversible monoamine oxidase-B inhibition, voltage-sensitive sodium/potassium channel blockage, and glutamate release inhibition. Meanwhile, safinamide shows tremendous therapeutic potential in the context of other central nervous system diseases (e. g. ischaemic stroke, amyotrophic lateral sclerosis, depression, etc.). In this work, [18 F]safinamide, which is safinamide labelled by the positron-emitting radionuclide [18 F]fluorine, was synthesized automatically based on iodonium ylide precursors with high radiochemical yield and high molar activity. Density functional theory was applied to calculate the Gibbs free energy change during iodonium ylide-mediated fluorination and to interpret the effect of tetraethylammonium (TEA+ ) as the counter cation in these reactions to improve the nucleophilicity of [18 F/19 F]fluoride. In addition, positron emission tomography studies on Sprague Dawley rats were carried out to determine the imaging characteristics, pharmacokinetics, and metabolism of the [18 F]safinamide radiotracer. The results displayed the complete biodistribution of the radiotracer, especially in rat brains, and revealed that [18 F]safinamide has moderate brain uptake, rapid and reversible binding kinetics, and good stability.


Subject(s)
Brain Ischemia , Stroke , Animals , Rats , Tissue Distribution , Fluorides , Fluorine , Tetraethylammonium , Rats, Sprague-Dawley , Positron-Emission Tomography/methods , Fluorine Radioisotopes , Monoamine Oxidase , Glutamates , Sodium , Potassium Channels
10.
Small ; 18(42): e2203628, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36135803

ABSTRACT

Microarchitectures with complex interior structures are important for many applications. However, engineering complex interior structures within microarchitectures are challenging. This article reports the introduction of electrochemical sculpting processes to carve the microarchitectures during or after their electrochemical growing process to design the interior structure of the microarchitectures. The electrochemical growing and sculpting process tangle together under the constant voltage electrodeposition mode with their strength depending on the ion concentration gradient and the voltage value. The unique thawing process of the frozen electrolyte is used to create the desired sharp ion concentration gradient, and has the potential to control the strength of the sculpting and the growing processes. How to completely decouple the growing and the sculpting process is further studied to gain more accurate control over the interior structures of the microarchitectures. It is revealed that the sculpting process can be exclusively applied onto the electrochemically grown microarchitectures simply by reversing the electric field without triggering any growing processes. Microarchitectures with complex interior structures, including micropyramids with a single cavity exclusively at the outward or every apex to multi-walled hollow pyramids with designable wall numbers and inter-wall distances are prepared as examples.

11.
Chem Asian J ; 17(17): e202200571, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35789116

ABSTRACT

Photodynamic therapy (PDT) is recognized to be a promising strategy for anticancer treatment. Considering the progressive application of PDT in clinical trials, highly efficient and photostable photosensitizers (PSs) are in strong demand. Aggregation-induced emission (AIE) based PSs are promising phototheranostic materials for tumor imaging and PDT due to their high fluorescence efficiency and photostability. Herein, a mitochondria-targeted PS, TPA-2TCP with AIE characteristics is developed by adopting an acceptor-π-donor-π-acceptor (A-π-D-π-A) structure. The untypical sequence of the electron donors and electron acceptors endows the derived AIE PS with evident redshift of the absorption and emission, and efficient generation of reactive oxygen species. With the positively charged pyridinium groups, nanoparticulated AIE PS (TPA-2TCP NPs) exhibits high cell binding efficiency towards 4T1 breast cancer cells, leading to the massive cell death via the apoptotic pathway under white light irradiation, demonstrating its potential application in cancer imaging and PDT.


Subject(s)
Neoplasms , Photochemotherapy , Electrons , Humans , Mitochondria/metabolism , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Reactive Oxygen Species/metabolism
12.
Mol Imaging Biol ; 24(6): 1007-1017, 2022 12.
Article in English | MEDLINE | ID: mdl-35835950

ABSTRACT

PURPOSE: Aggregation-induced emission (AIE) molecules have been widely utilized for fluorescence imaging in many biomedical applications, benefited from large Stokes shift, high quantum yield, good biocompatibility, and resistance to photobleaching. And visualization of mitochondria is almost investigated in vitro and ex vivo, but in vivo study of mitochondria is more essential for systematic biological research, especially during embryogenesis. Therefore, suitable and time-saving alternatives with simple operation based on AIE molecules are urgently needed compared with traditional transgenic approach. PROCEDURES: Five tetraphenylethylene isoquinolinium (TPE-IQ)-based molecules with AIE characteristics and their ability of mitochondrial visualization in vitro and in vivo and mitochondrial tracking during embryogenesis on zebrafish model were investigated. The biosafety of these AIE molecules was also evaluated systematically in vitro and in vivo. RESULTS: All these five AIE molecules could image mitochondria in vitro with good biocompatibility. In them, TPE-IQ1 exhibited excellent imaging quality for in vivo visualization and tracking of mitochondria during the 4-day embryogenesis in zebrafish, in comparison with the conventional transgenic fluorescent protein. Furthermore, TPE-IQ1 could visualize mitochondrial damage induced by chemicals in real time on 24-h post fertilization (hpf) embryos. CONCLUSIONS: This study indicated TPE-IQ-based AIE molecules had the potential for mitochondrial imaging and tracking during embryogenesis and mitochondrial damage visualization in vivo.


Subject(s)
Fluorescent Dyes , Zebrafish , Animals , Fluorescent Dyes/chemistry , Optical Imaging/methods , Mitochondria , Embryonic Development
13.
Chem Asian J ; 17(20): e202200579, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-35909081

ABSTRACT

In order to accommodate the growing demand for positron emission tomography (PET), it will be necessary to create innovative radiochemical and engineering technologies to optimize the manufacture and development of PET probes. Microfluidic devices allow radiosynthesis to be performed in microscale amounts, significantly impacting PET tracer production. Compared to traditional methods, microfluidic devices can produce PET tracers in a shorter time, higher yields, with lower reagent consumption, higher molar activity, and faster purification. This review examines microfluidic devices from an engineering perspective. Recently developed microfluidic radiosynthesis devices are classified into three categories according to their reaction volume: continuous-flow, batch-flow, and droplet-based microreactors. The principles of device architecture, radiosynthesis process, and the relative strengths and limitations of each category are emphasized by citing typical examples. Finally, the possible future applications of this technology are outlined. A flexible, miniature, fully automated radiochemical microfluidic platform will offer more straightforward and cheaper molecular imaging procedures and the potential for precision medicine that could allow operators to create customized tracers for individual patient doses.


Subject(s)
Lab-On-A-Chip Devices , Positron-Emission Tomography , Humans , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Radiochemistry/methods , Microfluidics/methods
14.
Mater Horiz ; 8(4): 1130-1152, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34821908

ABSTRACT

The demand for high rate energy storage systems is continuously increasing driven by portable electronics, hybrid/electric vehicles and the need for balancing the smart grid. Accordingly, Nb2O5 based materials have gained great attention because of their fast cation intercalation faradaic charge storage that endows them with high rate energy storage performance. In this review, we describe the crystalline features of the five main phases of Nb2O5 and analyze their specific electrochemical characteristics with an emphasis on the intrinsic ion intercalation pseudocapacitive behavior of T-Nb2O5. The charge storage mechanisms, electrochemical performance and state-of-the-art characterization techniques for Nb2O5 anodes are summarized. Next, we review recent progress in developing various types of Nb2O5 based fast charging electrode materials, including Nb2O5 based mixed metal oxides and composites. Finally, we highlight the major challenges for Nb2O5 based materials in the realm of high rate rechargeable energy storage and provide perspectives for future research.

15.
Chem Asian J ; 16(23): 3963-3969, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34605216

ABSTRACT

A lack of efficient diagnostic tools for early and noninvasive diagnosis of breast cancer has restricted the clinical treatment effect. This problem might be addressed by the combination of aggregation-induced emission (AIE) fluorescence imaging and positron emission tomography (PET) with the dual advantages of high resolution and easy operation, and unlimited penetration and high sensitivity. Here, a mitochondria-targeted AIE luminogen (AIEgen) radiolabeled with 18 F was developed through a two-step radiochemical reaction by virtue of a prosthetic group. The obtained 18/19 F-Bz-CP imaging probe was examined by in vitro cell uptake and cell proliferation inhibition in two breast cancer cell lines, showing that the probe can efficiently target and locate in the mitochondria through the analysis of fluorescence imaging and PET simultaneously. Additionally, the probe can induce cancer cell apoptosis with the half maximal inhibitory concentration (IC50) of 4.8 µM for MCF-7 cells and 7.2 µM for T47D cells, indicating its potential application for breast cancer therapy.


Subject(s)
Breast Neoplasms/drug therapy , Fluorescent Dyes/pharmacology , Radiopharmaceuticals/pharmacology , Apoptosis/drug effects , Breast Neoplasms/diagnostic imaging , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Fluorescent Dyes/chemistry , Fluorine Radioisotopes , Humans , Mitochondria , Optical Imaging , Positron-Emission Tomography , Radiopharmaceuticals/chemistry
16.
Nano Lett ; 21(12): 5105-5115, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34086465

ABSTRACT

For bacterial adhesion and biofilm formation, a thorough understanding of the mechanism and effective modulating is lacking due to the complex extracellular electron transfer (EET) at bacteria-surface interfaces. Here, we explore the adhesion behavior of a model electroactive bacteria under various metabolic conditions by an integrated electrochemical single-cell force microscopy system. A nonlinear model between bacterial adhesion force and electric field intensity is established, which provides a theoretical foundation for precise tuning of bacterial adhesion strength by the surface potential and the direction and flux of electron flow. In particular, based on quantitative analyses with equivalent charge distribution modeling and wormlike chain numerical simulations, it is demonstrated that the chain conformation and unfolding events of outer membrane appendages are dominantly impacted by the dynamic bacterial EET processes. This reveals how the anisotropy of bacterial conductive structure can translate into the desired adhesion behavior in different scenarios.


Subject(s)
Bacterial Adhesion , Electrons , Bacterial Physiological Phenomena , Biofilms , Electric Conductivity , Electron Transport
17.
Chemosphere ; 268: 129272, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33352511

ABSTRACT

Electrochemical degradation of toxic sulfanilamide with inexpensive approach is in urgent demand due to the harmful effects of sulfanilamide for both humans and aquatic environments. Here, we reported an efficient mineralization of sulfanilamide by using NiFe-layered double hydroxide (NiFe-LDH) nanosheets array with abundant oxygen vacancies that was in situ grown on exfoliated graphene (EG) by a simple hydrothermal treatment at different temperatures. The hydrothermal temperature was carefully analyzed for control synthesis of oxygen vacancy-rich NiFe-LDH/EG nanosheets array (NiFe-LDH/EG-OVr) for sulfanilamide degradation. Owing to the abundant oxygen vacancies, NiFe-LDH/EG-OVr rapidly generated hydrogen peroxide (H2O2) and hydroxyl radical (•OH) during electro-Fenton (EF) process, which resulted in the 98% mineralization of sulfanilamide in first 80 min. The radicals trapping experiments revealed that the •OH radicals was participated as the main active oxidation species in the efficient mineralization of sulfanilamide. The present results indicated that the oxidative attack by •OH radicals initiated the degradation process of sulfanilamide. During the total degradation of sulfanilamide, several organic compounds including aminophenol, hydroquinone, and oxalic acid, were identified as main intermediates by using gas chromatography-mass spectroscopy (GC-MS) and high-performance liquid chromatography-mass spectroscopy (HPLC-MS).


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Electrodes , Humans , Hydroxides , Iron , Oxidation-Reduction , Oxygen , Sulfanilamide
18.
Eur J Nucl Med Mol Imaging ; 48(3): 708-720, 2021 03.
Article in English | MEDLINE | ID: mdl-33216174

ABSTRACT

PURPOSE: To investigate the post-transplantation behaviour and therapeutic efficacy of human urinary-induced pluripotent stem cell-derived cardiomyocytes (hUiCMs) in infarcted heart. METHODS: We used clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRISPR/Cas9) technology to integrate a triple-fusion (TF) reporter gene into the AAVS1 locus in human urine-derived hiPSCs (hUiPSCs) to generate TF-hUiPSCs that stably expressed monomeric red fluorescent protein for fluorescence imaging, firefly luciferase for bioluminescence imaging (BLI) and herpes simplex virus thymidine kinase for positron emission tomography (PET) imaging. RESULTS: Transplanted cardiomyocytes derived from TF-hUiPSCs (TF-hUiCMs) engrafted and proliferated in the infarcted heart as monitored by both BLI and PET imaging and significantly improved cardiac function. Under ischaemic conditions, TF-hUiCMs enhanced cardiomyocyte (CM) glucose metabolism and promoted angiogenic activity. CONCLUSION: This study established a CRISPR/Cas9-mediated multimodality reporter gene imaging system that can determine the dynamics and function of TF-hUiCMs in myocardial infarction, which is helpful for investigating the application of stem cell therapy.


Subject(s)
Induced Pluripotent Stem Cells , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Genes, Reporter , Humans , Myocytes, Cardiac
19.
Angew Chem Int Ed Engl ; 60(8): 4049-4054, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33188558

ABSTRACT

In anion exchange membrane fuel cells, catalytic reactions occur at a well-defined three-phase interface, wherein conventional heterogeneous catalyst layer structures exacerbate problems, such as low catalyst utilization and limited mass transfer. We developed a structural engineering strategy to immobilize a molecular catalyst tetrakis(4-methoxyphenyl)porphyrin cobalt(II) (TMPPCo) on the side chains of an ionomer (polyfluorene, PF) to obtain a composite material (PF-TMPPCo), thereby achieving a homogeneous catalysis environment inside ion-flow channels, with greatly improved mass transfer and turnover frequency as a result of 100 % utilization of the catalyst molecules. The unique structure of the homogeneous catalysis system comprising interconnected nanoreactors exhibits advantages of low overpotential and high fuel-cell power density. This strategy of reshaping of the catalyst layer structure may serve as a new platform for applications of many molecular catalysts in fuel cells.

20.
Chem Asian J ; 15(23): 3942-3960, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33025759

ABSTRACT

Occurrence and development of cancer are multifactorial and multistep processes which involve complicated cellular signaling pathways. Mitochondria, as the energy producer in cells, play key roles in tumor cell growth and division. Since mitochondria of tumor cells have a more negative membrane potential than those of normal cells, several fluorescent imaging probes have been developed for mitochondria-targeted imaging and photodynamic therapy. Conventional fluorescent dyes suffer from aggregation-caused quenching effect, while novel aggregation-induced emission (AIE) probes are ideal candidates for biomedical applications due to their large stokes shift, strong photo-bleaching resistance, and high quantum yield. This review aims to introduce the recent advances in the design and application of mitochondria-targeted AIE probes. The comprehensive review focuses on the structure-property relationship of these imaging probes, expecting to inspire the development of more practical and versatile AIE fluorogens (AIEgens) as tumor imaging and therapy agents for preclinical and clinical use.


Subject(s)
Fluorescent Dyes/chemistry , Mitochondria/metabolism , Neoplasms/diagnostic imaging , Theranostic Nanomedicine/methods , Antineoplastic Agents/pharmacology , HeLa Cells , Humans , Molecular Probes , Molecular Structure , Optical Imaging , Photochemotherapy , Precision Medicine
SELECTION OF CITATIONS
SEARCH DETAIL
...