Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Int Immunopharmacol ; 127: 111345, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38086266

ABSTRACT

Triptolide (TPT) is widely used in the treatment of rheumatoid arthritis (RA). However, its regulatory mechanisms are not fully understood. This study demonstrated that Myeloid-derived suppressor cells (MDSCs) were expanded in both RA patients and arthritic mice. The frequency of MDSCs was correlated with RA disease severity and T helper 17 (Th17) responses. MDSCs from RA patients promoted the polarization of Th17 cells in vitro, which could be substantially attenuated by blocking arginase-1 (Arg-1). TPT inhibited the differentiation of MDSCs, particularly the monocytic MDSCs (M-MDSCs) subsets, as well as the expression of Arg-1 in a dose dependent manner. Alongside, TPT treatment reduced the potential of MDSCs to promote the polarization of IL-17+ T cell in vitro. Consistently, TPT immunotherapy alleviated adjuvant-induced arthritis (AIA) in a mice model, and reduced the frequency of MDSCs, M-MDSCs and IL-17+ T cells simultaneously. The presented data suggest a pathogenic role of MDSCs in RA and may function as a novel and effective therapeutic target for TPT in RA.


Subject(s)
Arthritis, Rheumatoid , Diterpenes , Myeloid-Derived Suppressor Cells , Phenanthrenes , Humans , Animals , Mice , Myeloid-Derived Suppressor Cells/metabolism , Interleukin-17/metabolism , Arginase/metabolism , Arthritis, Rheumatoid/metabolism , Epoxy Compounds
2.
Clin. transl. oncol. (Print) ; 25(5): 1436-1445, mayo 2023.
Article in English | IBECS | ID: ibc-219526

ABSTRACT

Background and objective This study intended to evaluate the prognostic effects of programmed death-ligand 1 (PD-L1) and tumor-infiltrating lymphocytes (TILs) in survival and their associations with clinicopathological characteristics in patients with gastric cancer. Methods PubMed, Scopus, ProQuest, Web of Science, and Ovid databases were searched to obtain the relevant studies. Eleven studies with 2298 patients were included in this study. Results Like the level of TILs, there were no significant associations between PD-L1 expression and TNM stage, lymph node metastasis, vascular invasion, and tumor location (All p values ≥ 0.05). Furthermore, there was no significant association between PD-L1 expression with overall survival (OS) (HR = 0.76, 95% CI: 0.55 to 1.05, p value = 0.10) and disease-free survival (DFS) (HR = 0.62, 95% CI: 0.10 to 3.68, p value = 0.59). In the assessment of TILs presence and survival association, the analysis showed no association between TILs presence and overall survival (OS) (HR = 0.95, 95% CI: 0.62 to 1.45). Conclusions In conclusion, the study has revealed no prognostic effect of PD-L1 and TILs in gastric cancer patients (AU)


Subject(s)
Humans , B7-H1 Antigen/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Stomach Neoplasms/pathology , Prognosis
3.
Clin Transl Oncol ; 25(5): 1436-1445, 2023 May.
Article in English | MEDLINE | ID: mdl-36528835

ABSTRACT

BACKGROUND AND OBJECTIVE: This study intended to evaluate the prognostic effects of programmed death-ligand 1 (PD-L1) and tumor-infiltrating lymphocytes (TILs) in survival and their associations with clinicopathological characteristics in patients with gastric cancer. METHODS: PubMed, Scopus, ProQuest, Web of Science, and Ovid databases were searched to obtain the relevant studies. Eleven studies with 2298 patients were included in this study. RESULTS: Like the level of TILs, there were no significant associations between PD-L1 expression and TNM stage, lymph node metastasis, vascular invasion, and tumor location (All p values ≥ 0.05). Furthermore, there was no significant association between PD-L1 expression with overall survival (OS) (HR = 0.76, 95% CI: 0.55 to 1.05, p value = 0.10) and disease-free survival (DFS) (HR = 0.62, 95% CI: 0.10 to 3.68, p value = 0.59). In the assessment of TILs presence and survival association, the analysis showed no association between TILs presence and overall survival (OS) (HR = 0.95, 95% CI: 0.62 to 1.45). CONCLUSIONS: In conclusion, the study has revealed no prognostic effect of PD-L1 and TILs in gastric cancer patients.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Stomach Neoplasms , Lymphocytes, Tumor-Infiltrating/immunology , Stomach Neoplasms/immunology , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Humans , Survival Rate , Publication Bias , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism
4.
Diagn Cytopathol ; 51(3): 182-190, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36422056

ABSTRACT

INTRODUCTION: Cytopathology is an important part of pathology that is used to diagnose disease on the cellular level. The application of the cell block (CB) technique plays a vital role in cytological diagnosis, as blocks and slides can be further used for special stains, immunohistochemistry (IHC), and molecular pathological analysis. Several methods for making CBs have been reported, but their procedures and cellular yield are still deemed unsatisfactory. In this article, we used gellan gum (GG) as an adjuvant for CBs, which resulted in higher cellular yield with simpler procedures. METHODS: CBs were prepared by using GG, copper sulfate, plasma/thrombin, or pregelatinized starch methods. The procedures of each of these four methods were then compared. CB sections were stained with hematoxylin and eosin (H&E), and the background and morphological features seen by H&E staining were compared. A preliminary IHC and fluorescence in situ hybridization (FISH) study was performed using cytology specimens from eleven and five cases, respectively. The expression of immunocomplex by IHC and the molecular signals detected by FISH were compared in CB sections made by the four methods and a section derived from the biopsy specimen block from the same patient. Feulgen staining, Alcian blue staining, and Masson trichrome staining were performed on the CB sections from 3 cases of pleural fluid. The cellular yield of CB sections from 83 cases according to the four methods was compared using NDP analysis software. RESULTS: The results demonstrated that sections derived from CBs made with GG had a clear background and good morphological features by H&E staining. The expression of immunocomplex by IHC and the molecular signals of FISH detection in the sections from CBs made by GG were accurately located just as those in biopsy sections from the same patient. The DNA, acidic mucus, and fibrin could be clearly identified through special stains in the CB sections. The procedures involved in the GG method were easily controllable and the coagulated gel increased the ease by which the CB was embedded and sectioned. Specifically, sections from CBs made by the GG method contained higher cellular yield because cells could be concentrated on the bottom of the gel after centrifugation. CONCLUSION: This novel method for making CBs is a practical, simple method that can result in higher cellular yield. This method is therefore worth promoting in clinical applications.


Subject(s)
Cytodiagnosis , Humans , Cytodiagnosis/methods , In Situ Hybridization, Fluorescence , Immunohistochemistry , Biopsy
5.
Front Immunol ; 13: 724139, 2022.
Article in English | MEDLINE | ID: mdl-35935996

ABSTRACT

Plenty of factors affect the oncogenesis and progression of colorectal cancer in the tumor microenvironment, including various immune cells, stromal cells, cytokines, and other factors. Chemokine is a member of the cytokine superfamily. It is an indispensable component in the tumor microenvironment. Chemokines play an antitumor or pro-tumor role by recruitment or polarization of recruiting immune cells. Meanwhile, chemokines, as signal molecules, participate in the formation of a cross talk among signaling pathways and non-coding RNAs, which may be involved in promoting tumor progression. In addition, they also function in immune escape. Chemokines are related to drug resistance of tumor cells and may even provide reference for the diagnosis, therapy, and prognosis of patients with colorectal cancer.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Chemokines/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cytokines/metabolism , Humans , Prognosis , Tumor Microenvironment
6.
Cancer Cell Int ; 21(1): 325, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193169

ABSTRACT

BACKGROUND: RNA binding protein (RBP) is an active factor involved in the occurrence and development of colorectal cancer (CRC). Therefore, the potential mechanism of RBP in CRC needs to be clarified by dry-lab analyses or wet-lab experiments. METHODS: The differential RBP gene obtained from the GEPIA 2 (Gene Expression Profiling Interactive Analysis 2) were performed functional enrichment analysis. Then, the alternative splicing (AS) events related to survival were acquired by univariate regression analysis, and the correlation between RBP and AS was analyzed by R software. The online databases were conducted to analyze the mutation and methylation of RBPs in CRC. Moreover, 5 key RBP signatures were obtained through univariate and multivariate Cox regression analysis and established as RBP prognosis model. Subsequently, the above model was verified through another randomized group of TCGA CRC cohorts. Finally, multiple online databases and qRT-PCR analysis were carried to further confirm the expression of the above 5 RBP signatures in CRC. RESULTS: Through a comprehensive bioinformatics analysis, it was revealed that RBPs had genetic and epigenetic changes in CRC. We obtained 300 differentially expressed RBPs in CRC samples. The functional analysis suggested that they mainly participated in spliceosome. Then, a regulatory network for RBP was established to participate in AS and DDX39B was detected to act as a potentially essential factor in the regulation of AS in CRC. Our analysis discovered that 11 differentially expressed RBPs with a mutation frequency higher than 5%. Furthermore, we found that 10 differentially expressed RBPs had methylation sites related to the prognosis of CRC, and a prognostic model was constructed by the 5 RBP signatures. In another randomized group of TCGA CRC cohorts, the prognostic performance of the 5 RBP signatures was verified. CONCLUSION: The potential mechanisms that regulate the aberrant expression of RBPs in the development of CRC was explored, a network that regulated AS was established, and the RBP-related prognosis model was constructed and verified, which could improve the individualized prognosis prediction of CRC.

7.
Cell Death Dis ; 12(6): 576, 2021 06 04.
Article in English | MEDLINE | ID: mdl-34088891

ABSTRACT

Cancer-secreted exosomes are critical mediators of cancer-host crosstalk. In the present study, we showed the delivery of miR-21-5p from colorectal cancer (CRC) cells to endothelial cells via exosomes increased the amount of miR-21-5p in recipient cells. MiR-21-5p suppressed Krev interaction trapped protein 1 (KRIT1) in recipient HUVECs and subsequently activated ß-catenin signaling pathway and increased their downstream targets VEGFa and Ccnd1, which consequently promoted angiogenesis and vascular permeability in CRC. A strong inverse correlation between miR-21-5p and KRIT1 expression levels was observed in CRC-adjacent vessels. Furthermore, miR-21-5p expression in circulating exosomes was markedly higher in CRC patients than in healthy donors. Thus, our data suggest that exosomal miR-21-5p is involved in angiogenesis and vascular permeability in CRC and may be used as a potential new therapeutic target.


Subject(s)
Colorectal Neoplasms/blood supply , KRIT1 Protein/metabolism , MicroRNAs/metabolism , Animals , Capillary Permeability , Cell Movement/physiology , Cell Proliferation/physiology , Chick Embryo , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Exosomes/genetics , Exosomes/metabolism , HCT116 Cells , HT29 Cells , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , KRIT1 Protein/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Tumor Microenvironment
8.
Front Oncol ; 11: 566539, 2021.
Article in English | MEDLINE | ID: mdl-33937013

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. This work screens autophagy-related markers and signaling pathways that may participate in the development of CRC, and establishes a prognostic model of CRC based on autophagy-associated genes. METHODS: Gene transcripts from the TCGA database and autophagy-associated gene data from the GeneCards database were used to obtain expression levels of autophagy-associated genes, followed by Wilcox tests to screen for autophagy-related differentially expressed genes. Then, 11 key autophagy-associated genes were identified through univariate and multivariate Cox proportional hazard regression analysis and used to establish prognostic models. Additionally, immunohistochemical and CRC cell line data were used to evaluate the results of our three autophagy-associated genes EPHB2, NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier survival analysis, risk profiling, and independent prognosis analysis were carried out. Receiver operating characteristic analysis was performed to estimate the specificity and sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were performed to identify the relevant signaling pathways. RESULTS: A total of 301 autophagy-related genes were differentially expressed in CRC. The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729, respectively. GSEA analysis of the model showed significant enrichment in several tumor-relevant pathways and cellular protective biological processes. The expression of EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability (MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a prognostic risk assessment model based on 11 autophagy-related genes in CRC. CONCLUSION: A prognostic risk assessment model based on 11 autophagy-associated genes was constructed in CRC. The new model suggests directions and ideas for evaluating prognosis and provides guidance to choose better treatment strategies for CRC.

9.
Med Oncol ; 38(4): 43, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33738588

ABSTRACT

The incidence and mortality of colorectal cancer (CRC) have always been among the highest in the world, although the diagnosis and treatment are becoming more and more advanced. At present, the main reason is that patients have acquired drug resistance after long-term conventional drug treatment. An increasing number of evidences confirm the existence of cancer stem cells (CSCs), which are a group of special cells in cancer, only a small part of cancer cells. These special cell populations are not eliminated by chemotherapeutic drugs and result in tumor recurrence and metastasis after drug treatment. CSCs have the ability of self-renewal and multidirectional differentiation, which is associated with the occurrence and development of cancer. CSCs can be screened and identified by related surface markers. In this paper, the characteristic surface markers of CSCs in CRC and the related mechanism of drug resistance will be discussed in detail. A better understanding of the mechanism of CSCs resistance to chemotherapy may lead to better targeted therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Colorectal Neoplasms/metabolism , Drug Resistance, Neoplasm , Humans , Neoplastic Stem Cells/metabolism
10.
Tumori ; 107(6): 483-488, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32867618

ABSTRACT

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is encoded by the protein kinase, DNA-activated, catalytic polypeptide (PRKDC) gene. DNA-PKcs plays a major role in nonhomologous end joining DNA repair, and it has been identified to be an important factor in tumor progression and metastasis. DNA-PKcs may have opposite effects in diseases, depending on the cell and tissue types. In this review, we discuss its role in various tumors. High levels of DNA-PKcs are directly associated with prognosis, neoplasm recurrence rates, and overall survival. Our results suggest that DNA-PKcs may serve as a therapeutic target for advanced malignancies.


Subject(s)
Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Animals , DNA Damage , DNA Repair , Disease Progression , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Oncogenes , Organ Specificity , Signal Transduction
11.
Cell Prolif ; 53(10): e12900, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32914514

ABSTRACT

Colorectal cancer (CRC) has become a concern because of its high recurrence rate and metastasis rate, low early diagnosis rate and poor therapeutic effect. At present, various studies have shown that autophagy is closely connected with the occurrence and progression of CRC. Autophagy is a highly cytosolic catabolic process involved in lysosomes in biological evolution. Cells degrade proteins and damaged organelles by autophagy to achieve material circulation and maintain cell homeostasis. Moreover, microRNAs are key regulators of autophagy, and their mediated regulation of transcriptional and post-transcriptional levels plays an important role in autophagy in CRC cells. This review focuses on the recent research advances of how autophagy and related microRNAs are involved in affecting occurrence and progression of CRC and provides a new perspective for the study of CRC treatment strategies.


Subject(s)
Autophagy , Colorectal Neoplasms/pathology , MicroRNAs/metabolism , Antineoplastic Agents/therapeutic use , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cell Cycle Checkpoints/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
12.
J Cancer ; 10(21): 5015-5021, 2019.
Article in English | MEDLINE | ID: mdl-31602252

ABSTRACT

Circular RNAs (circRNAs) are recently discovered as a special novel type of endogenous noncoding RNAs (ncRNAs), which form a covalently closed continuous loop and are highly represented in the eukaryotic transcriptome. Recent research revealed that circRNAs can function as microRNA (miRNA) sponges, regulators of splicing and transcription, as well as interact with RNA-binding proteins (RBPs). In this review, not only the function and mechanism, but also the experimental methods of circRNA are summarized. The summary of the current state of circRNA will help us in the discovery of novel biomarkers, the therapeutic targets and their potential significance in diagnosis and treatment of diseases. CircRNAs might play important roles in cancers especially in hepatocellular carcinoma, gastric carcinoma and colorectal cancer as well as serving as diagnostic or predictive biomarkers of some diseases and providing new treatments of diseases.

13.
Exp Ther Med ; 18(4): 2459-2466, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31555358

ABSTRACT

MicroRNAs (miRNAs/miRs) are small non-coding RNAs that serve a post-transcriptional regulatory role in eukaryotes. Previous studies have demonstrated that the expression of miR-34a in colorectal cancer (CRC) tissues is decreased compared with that in normal colorectal tissues. However, the role of miR-34a in the invasion and metastasis of CRC remains unclear. In the present study, the levels of miR-34a expression were measured in various CRC cell lines. The cells were transfected with miR-34a mimics or inhibitors in order to assess the proliferation rate, and the colony forming, invasive and migratory abilities. Furthermore, the protein expression levels of vimentin and early growth response protein 1 (EGR1) were examined by western blot analysis. The results revealed that the expression of miR-34a was low in SW620, RKO, LoVo and Caco-2 cell lines and high in the SW480 and SW1116 cell lines. The migration, invasion and proliferation levels of SW480 cells were facilitated by decreasing the expression of miR-34a. Transient transfection with miR-34a mimics in SW620 cells caused a notable decrease in cell migration, invasion and proliferation levels compared with the control group, and a downregulation of vimentin and upregulation of EGR1 protein expression. The present study demonstrated that miR-34a was deregulated in a highly invasive CRC cell lines, and that it may attenuate the migratory, invasive and proliferative capabilities of CRC cells by enhancing the expression of EGR1 and inhibiting that of vimentin. The results of the present study represent important progress towards understanding the mechanisms of CRC recurrence and metastasis.

14.
Front Oncol ; 9: 1542, 2019.
Article in English | MEDLINE | ID: mdl-32010629

ABSTRACT

Colorectal cancer (CRC) is the primary cause of cancer-related death worldwide; however, specific and sensitive tools for the early diagnosis and targeted therapy of CRC are currently lacking. High-throughput sequencing technology revealed that gene expression of long-chain non-coding RNAs (lncRNAs) in a number of cancers directly or indirectly interferes with various biological processes. Emerging evidence suggests that lncRNAs regulate target genes and play an important role in the biological processes of malignancies, including CRC. Many carcinostatic/oncogenic lncRNAs have been identified as biomarkers for metastasis and prognosis in CRC; hence, they serve as therapeutic tools. In this article, we systematically review the literature on the disordered lncRNAs in CRC from four aspects: DNA transcription, RNA level regulation, post-translational level, and the translation of lncRNAs into polypeptides. Subsequently, we analyze the mechanism through which lncRNAs participate in the biological process of CRC. Finally, we discuss the application and prospects of these lncRNAs in CRC.

15.
J Cancer ; 9(18): 3247-3256, 2018.
Article in English | MEDLINE | ID: mdl-30271483

ABSTRACT

Curative molecular therapy for non-small cell lung cancer (NSCLC) is still lacking. Scutellarin, an active flavone extracted from Erigeron breviscapus Hand-Mazz, displays anti-tumor property in diverse cancer types, yet its tumor-suppressive effect on NSCLC is not reported. In this study, we found that scutellarin significantly inhibited the proliferation of NSCLC cells, induced cell apoptosis, and triggered autophagy. Notably, inhibition of autophagy with inhibitor HCQ attenuated the anti-proliferative activity of scutellarin, indicating that scutellarin-induced autophagy is antineoplastic. In addition, HCQ treatment reduced scutellarin-induced apoptosis. Further study demonstrated that scutellarin stimulated phosphorylation of ERK1/2, and inhibition of ERK1/2 with inhibitor U0126 markedly attenuated scutellarin-induced autophagy. Similarly, scutellarin downregulated the expression of p-AKT, and AKT inhibitor MK-2206 induced autophagy. Moreover, there also existed crosstalk between ERK and AKT pathways. Finally, in vivo xenograft nude mice experiment proved that scutellarin treatment significantly reduced tumor growth and increased the levels of LC3-II and p-ERK1/2, suppressed p-AKT in mice tumors. Thus, our study for the first time uncovered the anti-cancer function of scutellarin on NSCLC cells, and might provide a potential novel therapy for treatment of patients with NSCLC.

16.
BMC Cancer ; 18(1): 661, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29914442

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is the sixth most common cancer and the second leading cause of cancer-related deaths worldwide. Despite new technologies in diagnosis and treatment, the incidence and mortality of HCC continue rising. And its pathogenesis is still unclear. As a highly conserved protein of the Golgi apparatus, Golgi phosphoprotein 3 (GOLPH3) has been shown to be involved in tumorigenesis of HCC. This study aimed to explore the exact oncogenic mechanism of GOLPH3 and provide a novel diagnose biomarker and therapeutic strategy for patients with HCC. METHODS: Firstly, the expression of GOLPH3 was detected in the HCC tissue specimens and HCC cell lines. Secondly, RNA interference was used for GOLPH3 gene inhibition. Thirdly, cell proliferation was analyzed by MTT; cell apoptosis was analyzed by Annexin-V/PI staining, Hoechst 33,342 staining and caspase 3/7 activity assay. Fourthly, xenograft tumor model was used to study the function of GOLPH3 in tumor growth in vivo. Finally, western blotting and immunohistochemistry were used to investigate the role of GOLHP3 in the mTOR signaling pathway. RESULTS: Data showed that the mRNA and protein expression of GOLPH3 were up-regulated in HCC tumor tissue and cell lines compared with those of control (P < 0.05). Correlation analyses showed that GOLPH3 expression was positively correlated with serum alpha-fetoprotein level (AFP, P = 0.006). Knockdown GOLPH3 expression inhibited proliferation and promoted apoptosis in HCC cell lines. What's more, knockdown GOLPH3 expression led to tumor growth restriction in xenograft tumor model. The expression of phosphorylated mTOR, AKT and S6 K1 were significantly higher in HCC tumor tissue and cell lines compared with those in normal liver tissues (p < 0.05). While the phosphorylated mTOR, AKT and S6 K1 were much lower when diminished GOLPH3 expression in HCC cell lines both in vitro and in vivo. CONCLUSION: The current study suggests that GOLPH3 contributes to the tumorigenesis of HCC by activating mTOR signaling pathway. GOLPH3 is a promising diagnose biomarker and therapeutic target for HCC. Our study may provide a scientific basis for developing effective approaches to treat the HCC patients with GOLPH3 overexpression.


Subject(s)
Carcinogenesis/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Membrane Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Adult , Aged , Animals , Biomarkers, Tumor/analysis , Disease Progression , Female , Heterografts , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Signal Transduction/physiology
17.
Article in English | MEDLINE | ID: mdl-28009838

ABSTRACT

Intersections are one of the major locations where safety is a big concern to drivers. Inappropriate driver behaviors in response to frequent changes when approaching intersections often lead to intersection-related crashes or collisions. Thus to better understand driver behaviors at intersections, especially in the dilemma zone, a Hidden Markov Model (HMM) is utilized in this study. With the discrete data processing, the observed dynamic data of vehicles are used for the inference of the Hidden Markov Model. The Baum-Welch (B-W) estimation algorithm is applied to calculate the vehicle state transition probability matrix and the observation probability matrix. When combined with the Forward algorithm, the most likely state of the driver can be obtained. Thus the model can be used to measure the stability and risk of driver behavior. It is found that drivers' behaviors in the dilemma zone are of lower stability and higher risk compared with those in other regions around intersections. In addition to the B-W estimation algorithm, the Viterbi Algorithm is utilized to predict the potential dangers of vehicles. The results can be applied to driving assistance systems to warn drivers to avoid possible accidents.


Subject(s)
Automobile Driving/psychology , Behavior , Markov Chains , Accidents, Traffic/prevention & control , Algorithms , Humans , Probability , Risk Assessment , Risk Factors , Safety
18.
Eur Arch Otorhinolaryngol ; 272(9): 2153-60, 2015 Sep.
Article in English | MEDLINE | ID: mdl-24858698

ABSTRACT

Connexin 26 (cx26) plays an important role in the intercellular signaling and is related to K(+) metabolism in stria vascularis (SV). Reactive oxygen species (ROS) are negative regulators of cx26, reducing intercellular coupling in cochlea. ROS plays an important role in acoustic trauma. Radix astragali is a natural antioxidant that decreases impulse noise-induced hearing loss through its ability to inhibit ROS. The purpose of this study was to investigate if radix astragali has the potential to reduce the change of cx26 in SV from impulse noise. Guinea pigs in the experimental group were administered radix astragali intraperitoneally. Auditory thresholds were assessed by sound-evoked auditory brainstem response (ABR) at click and tone bursts of 8, 16 and 32 kHz, 24 h before and 72 h after exposure to impulse noise. 4-Hydroxynonenal, cx26 and KCNQ1 were determined immunohistochemically in SV. SV was analyzed by transmission electron microscopy. Radix astragali significantly reduced the ABR deficits and the SV damage, and decreased the shifts of the expression of cx26 and KCNQ1 in the SV. These results suggest that the beneficial effect of radix astragali on impulse noise-induced hearing loss may be also due to its ability to reduce the change of cx26 in SV.


Subject(s)
Connexins/metabolism , Drugs, Chinese Herbal/therapeutic use , Hearing Loss, Noise-Induced/drug therapy , Hearing Loss, Noise-Induced/metabolism , Stria Vascularis/metabolism , Aldehydes/metabolism , Animals , Astragalus propinquus , Auditory Threshold , Connexin 26 , Disease Models, Animal , Down-Regulation , Evoked Potentials, Auditory, Brain Stem/physiology , Guinea Pigs , Hearing Loss, Noise-Induced/etiology
19.
Article in Chinese | MEDLINE | ID: mdl-25195272

ABSTRACT

OBJECTIVE: To investigate the expression and clinicopathological significance of the cell cycle regulators cyclin E, cyclin D1, p21, p16 in laryngeal carcinogenesis tissus. METHOD: The expression of cell cycle regulators were detected by flow cytometry method in 23 cases of polyps of vocal cord, 69 cases of laryngeal precancerous change and 33 cases of laryngeal squamous cell carcinoma (LSCC), which tissue was paraffin embedded, sliced, dewaxed, and prepared into the cell suspension, then fluorescently labeled by cyclin E, cyclin D1, p21 and p16. RESULT: In polyps of vocal cord, laryngeal precancerous change and LSCC, The positive expression rate of cyclin E and cyclin D1 were respectively 13.04%, 20.29D, 42.420 and 26.09%, 43.48% and 93.94%. The positive expression rate of p16 and p21 were respectively 61.90%, 40.98%, 14.28% and 47.62%, 23.81%, 26.23%. Those showed the positive expression rate of cyclin D1, cyclin E gradually decreased from vocal cord polyps, laryngeal precancerous change to LSCC, (P < 0.05, P < 0.01), while the positive expression rate of p21 and p16 gradually decreased (P < 0.01). CONCLUSION: The abnormal expression of cell cycle regulatory factors is the molecular events of laryngeal carcinoma. High expression of positive regulatory factors cyclin D1 and cyclin E, and low expression of negative regulatory factors p16 and p21, which showed the imbalance of multiple positive and negative regulatory factors related with cell cycle play an important role in the occurrence of laryngeal cancer.


Subject(s)
Cyclin D1/metabolism , Cyclin E/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Laryngeal Neoplasms/pathology , Oncogene Proteins/metabolism , Adult , Female , Flow Cytometry , Humans , Laryngeal Neoplasms/metabolism , Male , Middle Aged
20.
Exp Mol Pathol ; 95(2): 144-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23797005

ABSTRACT

The aim of the present study was to optimize the pregelatinized starch technique for cell block preparation and apply this approach in cultured cells of all types of growing forms, suspension and adherent. In order to evenly mix the starch powder and the cell suspension, we crafted a special plastic dropper. To prove the effectiveness of this optimized technique we used different cell lines, NCI-H69, NCI-H345, HCT-116, SKBR3 and MDA-MB-231. The morphology features, immunocytochemistry (ICC) and fluorescent/chromogenic in-situ hybridization (FISH/CISH) on the cell block sections were evaluated. The morphology features, the ICC and ISH results of cell block sections prepared by the new method were satisfactory comparing with the results obtained in biopsies, the gold standard test for this kind of analysis. The most attractive advantage of our optimized pregelatinized starch technique is that this new method is based on cell suspensions instead of cell sediment, so with our technique every section will contain cells due to the even distribution of the starch powder and the cells forming a homogeneous cell block. To the authors' knowledge, this is the first description on cell block preparation based on cell suspension.


Subject(s)
Histocytological Preparation Techniques , Cell Line , Gelatin , Humans , Starch
SELECTION OF CITATIONS
SEARCH DETAIL
...