Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
Gland Surg ; 13(5): 775-780, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38845830

ABSTRACT

Background: Thyroglossal duct cyst (TGDC) is a common congenital neck mass that is the most frequent cause of neck swelling in children. The traditional open Sistrunk procedure for TGDC often leaves a visible scar on the neck. Therefore, it is essential to consider the impact of neck scarring on the quality of life for children and adolescents. Our study aimed to assess the safety and efficacy of robotic TGDC resection using the bilateral axillo-breast approach (BABA) in adolescents. Case Description: A 16-year-old female patient presented with a neck mass (no pain or redness) that had been present for 3 years. The palpable neck mass moved with swallowing and there was no history of other significant medical conditions. An ultrasound scan of the neck indicated a weak hypoechoic area in the thyrohyoid region measuring 29 mm × 20 mm. Additionally, the ultrasonography of the thyroid gland showed no obvious abnormalities. A computer tomography (CT) scan confirmed a low-density lesion on the right hyoid bone, measuring 27 mm × 18 mm × 26 mm, consistent with a TGDC. We successfully performed a BABA robotic TGDC resection on the 16-year-old female adolescent who had a strong desire for scar-free surgery. Conclusions: BABA robotic TGDC resection could achieve the same surgical effect as conventional open surgery while providing better cosmetic outcomes, which are essential for the physical and mental well-being of teenagers. Therefore, BABA robotic TGDC resection may be a safe and feasible treatment option with excellent cosmetic results in adolescents.

2.
Chem Sci ; 15(20): 7441-7473, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784725

ABSTRACT

Manganese-based materials are considered as one of the most promising cathodes in zinc-ion batteries (ZIBs) for large-scale energy storage applications owing to their cost-effectiveness, natural availability, low toxicity, multivalent states, high operation voltage, and satisfactory capacity. However, their intricate energy storage mechanisms coupled with unsatisfactory cycling stability hinder their commercial applications. Previous reviews have primarily focused on optimization strategies for achieving high capacity and fast reaction kinetics, while overlooking capacity fluctuation and lacking a systematic discussion on strategies to enhance the cycling stability of these materials. Thus, in this review, the energy storage mechanisms of manganese-based ZIBs with different structures are systematically elucidated and summarized. Next, the capacity fluctuation in manganese-based ZIBs, including capacity activation, degradation, and dynamic evolution in the whole cycle calendar are comprehensively analyzed. Finally, the constructive optimization strategies based on the reaction chemistry of one-electron and two-electron transfers for achieving durable cycling performance in manganese-based ZIBs are proposed.

3.
Int J Oral Implantol (Berl) ; 17(2): 203-220, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801333

ABSTRACT

PURPOSE: Complex bone defects with a horizontal and vertical combined deficiency pose a clinical challenge in implant dentistry. This study reports the case of a young female patient who presented with a perforating bone defect in the aesthetic zone. MATERIALS AND METHODS: Based on prosthetically guided bone regeneration, virtual 3D bone augmentation was planned. A 3D printed customised titanium mesh and the autogenous bone ring technique were then utilised simultaneously to achieve a customised bone contour. After 6 months, the titanium mesh was removed and connective tissue grafting was performed. Finally, implants were placed and the provisional and definitive prostheses were delivered following a digital approach. Vertical and horizontal bone gain, new bone density, pseudo-periosteum type and marginal bone loss were measured. Planned bone volume, regenerated bone volume and regeneration rate were analysed. RESULTS: Staged tooth shortening led to a coronal increase in keratinised mucosa. The customised titanium mesh and bone ring technique yielded 14.27 mm vertical bone gain and 12.9 mm horizontal bone gain in the perforating area. When the titanium mesh was removed, the reopening surgery showed a Type 1 pseudo-periosteum (none or < 1 mm), and CBCT scans revealed a new bone density of ~550 HU. With a planned bone volume of 1063.55 mm3, the regenerated bone volume was 969.29 mm3, indicating a regeneration rate of 91.14%. The 1-year follow-up after definitive restoration revealed no complications except for 0.55 to 0.60 mm marginal bone loss. CONCLUSION: Combined application of customised titanium mesh and an autogenous bone ring block shows promising potential to achieve prosthetically guided bone regeneration for complex bone defects in the aesthetic zone.


Subject(s)
Alveolar Ridge Augmentation , Printing, Three-Dimensional , Surgical Mesh , Titanium , Humans , Female , Alveolar Ridge Augmentation/methods , Adult , Bone Transplantation/methods , Bone Regeneration , Esthetics, Dental , Dental Implantation, Endosseous/methods
4.
Clin Transl Med ; 14(5): e1687, 2024 May.
Article in English | MEDLINE | ID: mdl-38738791

ABSTRACT

OBJECTIVE: It has been observed that the prognosis of patients with HER2-positive metastatic breast cancer has improved significantly with HER2-targeted agents. However, there is still a lack of evidence regarding first-line anti-HER2 treatment options for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, there are no reliable markers that can predict the efficacy of anti-HER2 treatment in these patients. METHODS: Patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer were enrolled. Pyrotinib plus albumin-bound paclitaxel were used as first-line treatment. The primary endpoint was the objective response rate (ORR). The safety profile was also assessed. In order to explore predictive biomarkers using Olink technology, blood samples were collected dynamically. RESULTS: From December 2019 to August 2023, the first stage of the study involved 27 eligible patients. It has not yet reached the median PFS despite the median follow-up being 17.8 months. Efficacy evaluation showed that the ORR was 92.6%, and the DCR was 100%. Adverse events of grade 3 or higher included diarrhoea (29.6%), leukopenia (11.1%), neutropenia (25.9%), oral mucositis (3.7%), and hand-foot syndrome (3.7%). Toll-like receptor 3 (TLR3) and Proto-oncogene tyrosine-protein kinase receptor (RET) were proteins with significant relevance to PFS in these patients. CONCLUSIONS: This study demonstrates that pyrotinib plus albumin-bound paclitaxel as a first-line treatment regimen shows good efficacy and manageable safety for patients who have received adjuvant and/or neoadjuvant trastuzumab for HER2-positive metastatic breast cancer. Besides, a significant association was identified between the expression levels of TLR3 and RET and the PFS in patients.


Subject(s)
Breast Neoplasms , Receptor, ErbB-2 , Trastuzumab , Humans , Female , Breast Neoplasms/drug therapy , Middle Aged , Adult , Trastuzumab/therapeutic use , Trastuzumab/pharmacology , Prospective Studies , Aged , Receptor, ErbB-2/metabolism , Albumin-Bound Paclitaxel/therapeutic use , Albumin-Bound Paclitaxel/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Acrylamides/therapeutic use , Neoadjuvant Therapy/methods , Proto-Oncogene Mas , Sulfinic Acids/therapeutic use , Sulfinic Acids/pharmacology , Aminoquinolines/therapeutic use , Aminoquinolines/pharmacology , Treatment Outcome
5.
Chem Commun (Camb) ; 60(47): 6051-6054, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38779871

ABSTRACT

Herein, we report the first result of large scale and oxygen vacancy VO2 porous thin sheets assembled by a 3D interconnected nanoflake array framework, which is recorded as VOd. The as-prepared VOd was characterized by various methods and Zn2+ intercalation/deintercalation and structural decomposition mechanisms were proposed based on ex situ X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

6.
J Colloid Interface Sci ; 665: 172-180, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38522157

ABSTRACT

Aqueous rechargeable Zn-based batteries (ARZBs) have attracted increasing attention as favorable candidates for energy storage systems due to their high security, environmental friendliness, and abundance of electrode materials. At present, the most widely reported materials used in cobalt-zinc (Co-Zn) batteries are cobalt-based oxides and their derivatives, however, they still exhibit low actual capacities and unsatisfactory cycle lives. Metal-organic frameworks (MOFs), as a new class of porous materials with high specific surface area and adjustable pore size, have attracted considerable attention in the field of energy storage. Currently, pristine MOFs have currently few applications in Co-Zn batteries, and their performance is not ideal. Herein, we report a series of two-dimensional (2D) bimetallic CoM-MOF (M = Ni, Mn, Mg and Cu) nanosheets based on trimesic acid (H3BTC) ligand as cathodes for alkaline Co-Zn batteries via a simple one-pot hydrothermal synthesis. Among the synthesized MOFs, the CoNi-MOF nanosheets have the best performance, exhibiting a high reversible capacity of 344 mA h g-1 and demonstrating a good cycling life with 90 % capacity retention at 20 A g-1 after 1500 cycles. The energy storage mechanism is studied through a series of ex-situ characterizations. This study is of great importance in advancing the application of 2D pristine MOFs for high-performance Co-Zn batteries.

7.
Heliyon ; 10(5): e26853, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439876

ABSTRACT

Background: Cisplatin (DDP) is the principal agent used for chemotherapy in patients with non-small cell lung cancer (NSCLC). Nevertheless, DDP resistance is an essential cause for a worse prognosis of patient. Therefore, this study proposes to discover features of miR-424-5p in DDP resistance of NSCLC. Method: After exogenous modulation of miR-424-5p expression, A549 cell activity was measured using CCK-8 and flow cytometry. A549/DDP and A549/DDP-associated subcutaneous tumor model were constructed to investigate the effect of miR-424-5p on DDP resistance in NSCLC in vivo. TargetScan and JASPAR databases predicted the potential molecular mechanism of miR-424-5p. A549-and A549/DDP-derived exosomes were isolated and characterized using a transmission electron microscope and nanoparticle tracking analysis. Result: Overexpression of miR-424-5p facilitated proliferation and DDP resistance in A549 cells, and knockdown of miR-424-5p did the opposite. Knockdown of miR-424-5p enhanced DDP restriction on tumor weight and volume. Moreover, SOCS5 and SOCS56 (SOCS5/6) were downstream targets of miR-424-5p. miR-424-5p down-regulated SOCS5/6 expression to activate JAK2/STAT3 and PI3K/AKT pathways. Notably, tumor protein p53 (TP53) is a transcription factor for the miR-424-5p host gene, as confirmed by the dual-luciferase reporter gene. Cellular and animal experiments indicated that TP53 limited the regulatory function of miR-424-5p on NSCLC growth, DDP resistance, and related molecules. Interestingly, miR-424-5p was markedly enriched in A549/DDP cell-derived exosomes than in A549 cell-derived exosomes, and TP53 down-regulated miR-424-5p expression in A549/DDP cell-derived exosomes. Conclusion: DDP-resistant cell-derived exosome miR-424-5p contributes to NSCLC growth and DDP resistance by targeting SOCS5 and SOCS6 to activate JAK2/STAT3 and PI3K/AKT pathways, which are blocked by TP53.

8.
J Robot Surg ; 18(1): 88, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38386236

ABSTRACT

Transoral vestibular robotic thyroidectomy can really make the patient's body surface free of scar. This study aimed to compare the surgical and patient-related outcomes between the transoral vestibular robotic thyroidectomy and traditional low-collar incision thyroidectomy. The clinical data of 120 patients underwent transoral vestibular robotic thyroidectomy (TOVRT) or traditional low-collar incision thyroidectomy (TLCIT) were collected from May 2020 to October 2021. Propensity score matching analysis was used to minimize selection bias. All these patients were diagnosed with papillary thyroid carcinoma (PTC) through ultrasound-guided fine-needle aspiration prior to surgical intervention and surgical plan was tailored for each patient. An intraoperative recurrent laryngeal nerve (RLN) detection system was used in all patients, whose RLNs were identified and protected. We performed transoral vestibular robotic thyroidectomy with three intraoral incisions. Additional right axillary fold incisions were adopted occasionally to enhance fine reverse traction of tissue for radical tumor dissection. Clinical data including gender, age, tumor size, BMI, operation time, postoperative drainage volume and time, pain score, postoperative length of stay (LOS),number of lymph nodes removed, complications, and medical expense were observed and analyzed. Propensity score matching was used for 1:1 matching between the TOVRT group and the TLCIT group. All these patients accepted total thyroidectomy(or lobectomy) plus central lymph node dissection and all suffered from PTC confirmed by postoperative pathology. No conversion to open surgery happened in TOVRT group. The operative time of TOVRT group was longer than that of TLCIT group (P < 0.05). The postoperative drainage volume of TOVRT group was more than that of TLCIT group (P < 0.05). The drainage tube placement time of TOVRT group were longer than that of TLCIT group (P < 0.05). Significant differences were also found in intraoperative bleeding volume, pain score and medical expense between the two groups (P < 0.05). The incidence of perioperative common complications such as hypoparathyroidism and vocal cord paralysis in the two groups was almost identical (P > 0.05). However, there were some specific complications such as surgical area infection (one case), skin burn (one case), oral tear (two cases), and paresthesia of the lower lip and the chin (two cases) were found in TOVRT group. Obviously, the postoperative cosmetic effect of the TOVRT group was better than TLCIT group (P < 0.05). TOVRT is safe and feasible for low to moderate-risk PTC patients and is a potential alternative for patients who require no scar on their neck. Patients accepted TOVRT can get more satisfaction and have less psychologic injury caused by surgery.


Subject(s)
Neoplasms , Robotic Surgical Procedures , Humans , Thyroidectomy/adverse effects , Robotic Surgical Procedures/methods , Drainage , Cicatrix , Pain
9.
Small ; : e2306616, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38342672

ABSTRACT

Metal-organic frameworks (MOFs) are crystalline porous materials with a long-range ordered structure and excellent specific surface area and have found a wide range of applications in diverse fields, such as catalysis, energy storage, sensing, and biomedicine. However, their poor electrical conductivity and chemical stability, low capacity, and weak adhesion to substrates have greatly limited their performance. Doping has emerged as a unique strategy to mitigate the issues. In this review, the concept, classification, and characterization methods of doped MOFs are first introduced, and recent progress in the synthesis and applications of doped MOFs, as well as the rapid advancements and applications of first-principles calculations based on the density functional theory (DFT) in unraveling the mechanistic origin of the enhanced performance are summarized. Finally, a perspective is included to highlight the key challenges in doping MOF materials and an outlook is provided on future research directions.

10.
Bioorg Chem ; 145: 107218, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377820

ABSTRACT

Melanoma, a highly metastatic malignant tumour, necessitated early detection and intervention. This study focuses on a hemicyanine fluorescent probe activated by near-infrared (NIR) light for bioimaging and targeted mitochondrial action in melanoma cells. IR-418, our newly designed hemicyanine-based NIR fluorescent probe, demonstrated effective targeting of melanoma cell mitochondria for NIR imaging. In vitro and in vivo experiments revealed IR-418's inhibition of melanoma growth through the promotion of mitochondrial apoptosis (Bax/Bcl-2/Cleaved Caspase pathway). Moreover, IR-418 inhibited melanoma metastasis by inhibiting mitochondrial fission through the ERK/DRP1 pathway. Notably, IR-418 mitigated abnormal ATL and ASL elevations caused by tumours without inflicting significant organ damage, indicating its high biocompatibility. In conclusion, IR-418, a novel hemicyanine-based NIR fluorescent probe targeting the mitochondria, exhibits significant fluorescence imaging capability, anti-melanoma proliferation, anti-melanoma lung metastasis activities and high biosafety. Therefore, it has significant potential in the early diagnosis and treatment of melanoma.


Subject(s)
Carbocyanines , Fluorescent Dyes , Melanoma , Humans , Fluorescent Dyes/pharmacology , Melanoma/diagnostic imaging , Melanoma/drug therapy , Mitochondrial Dynamics , Apoptosis
11.
J Colloid Interface Sci ; 662: 490-504, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38364474

ABSTRACT

Aqueous zinc ion batteries (AZIBs) and aqueous magnesium ion batteries (AMIBs) offer powerful alternatives for large-scale energy storage because of their high safety and low cost. Consequently, the design of high-performance cathode materials is essential. In this paper, we present a simple strategy that combines oxygen defect (Od) engineering with a 2D-on-2D homogeneous nanopape-like bilayer V2O5 nH2O xerogel (BL-HVOd NPS). This strategy employs Od to improve Zn2+/Mg2+insertion/extraction kinetics and reduce irreversible processes for high-performance AZIBs/AMIBs. And interlayer water molecules serve as an effective spacer to stabilize the expanded interlayer gap in BL-HVOd NPS, thereby providing extended diffusion channels for Zn2+/Mg2+ during insertion/extraction. The interlayer water molecules help shield the electrostatic interaction between Zn2+/Mg2+ and BL-HVOd NPS lattice, which improves diffusion kinetics during repeated. In addition, electrochemical characterization results indicate that the BL-HVOd NPS can effectively the surface adsorption and internal diffusion of Zn2+/Mg2+. More importantly, the successfully prepared unique 2D-on-2D homogenous nanopaper structure enhances electrolyte/electrode contact and reduces the migration/diffusion path of electrons/Zn2+ and Mg2+, thus greatly improving rate performance. As a result, the BL-HVOd NPS as AZIBs/AMIBs electrodes offer better reversible capacity of 361.8 and 162.8 mA h g-1 (at 0.2 A g-1), while displaying impressively long cycle lifes. This method provides a way to prepare advanced xerogel cathode materials for AZIBs and AMIBs.

12.
Biochem Biophys Res Commun ; 693: 149374, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38096616

ABSTRACT

Cervical cancer, a common malignancy in women, poses a significant health burden worldwide. In this study, we aimed to investigate the expression, function, and potential mechanisms of NADH: ubiquinone oxidoreductase subunit A8 (NDUFA8) in cervical cancer. The Gene Expression Profiling Interactive Analysis (GEPIA) database and immunohistochemical scoring were used to analyze NDUFA8 expression in cervical cancer tissues and normal tissues. Quantitative real-time PCR and Western blot analyses were performed to assess the expression level of NDUFA8 in cervical cancer cell lines. NDUFA8 knockdown or overexpression experiments were conducted to evaluate its impact on cell proliferation and apoptosis. The mitochondrial respiratory status was analyzed by measuring cellular oxygen consumption, adenosine triphosphate (ATP) levels, and the expression levels of Mitochondrial Complex I activity, and Mitochondrial Complex IV-associated proteins Cytochrome C Oxidase Subunit 5B (COX5B) and COX6C. NDUFA8 exhibited high expression levels in cervical cancer tissues, and these levels were correlated with reduced survival rates. A significant upregulation of NDUFA8 expression was observed in cervical cancer cell lines compared to normal cells. Silencing NDUFA8 hindered cell proliferation, promoted apoptosis, and concurrently suppressed cellular mitochondrial respiration, resulting in decreased levels of available ATP. Conversely, NDUFA8 overexpression induced the opposite effects. Herein, we also found that E1A Binding Protein P300 (EP300) overexpression facilitated Histone H3 Lysine 27 (H3K27) acetylation enrichment, enhancing the activity of the NDUFA8 promoter region. NDUFA8, which is highly expressed in cervical cancer, is regulated by transcriptional control via EP300/H3K27 acetylation. By promoting mitochondrial respiration, NDUFA8 contributes to cervical cancer cell proliferation and apoptosis. These findings provide novel insights into NDUFA8 as a therapeutic target in cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Transcription Factors/metabolism , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Respiration , Adenosine Triphosphate , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , NADH Dehydrogenase/genetics , NADH Dehydrogenase/metabolism , E1A-Associated p300 Protein/genetics , E1A-Associated p300 Protein/metabolism
13.
Asian J Surg ; 47(1): 83-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37879990

ABSTRACT

Robotic thyroidectomy is one of the most advanced surgical procedures used to manage benign and malignant thyroid nodules. However, complication risks such as tracheal injury still exists. Tracheal injury in robotic thyroidectomy is difficult to detect and is one of the life-threatening complications. This study reviews the current literature on the tracheal injury following robotic thyroidectomy and also discusses our findings on 2060 cases of robotic thyroidectomy via Da Vinci Surgical System performed in our department and finally presents 3 cases treated in our center. PubMed and Web of Science database were searched using Medical Subject Headings (Mesh) related to "tracheal injury" and "robotic thyroidectomy". The search was conducted without publication date limits. We reviewed the literature and summarized common causes, diagnosis and therapeutic options of tracheal injury in robotic thyroidectomy, which has been described in comparison studies or retrospective studies. Tracheal injury is often diagnosed when patients suffer from dyspnea and usually leads to severe postoperative consequences. Tracheal injury can be suspected in all patients having subcutaneous emphysema, pneumomediastinum, pneumothorax or dyspnea after robotic thyroidectomy. Tracheoscopy is necessary to determine the location and size of tracheal injury. In patients whose condition is stable and the injury is contained, conservative treatment is feasible. Certainly, primary closure or tracheotomy is necessary for patients with serious respiratory difficulty or pneumothorax.


Subject(s)
Pneumothorax , Robotic Surgical Procedures , Thyroid Neoplasms , Tracheal Diseases , Humans , Thyroidectomy/adverse effects , Thyroidectomy/methods , Thyroid Neoplasms/surgery , Robotic Surgical Procedures/adverse effects , Robotic Surgical Procedures/methods , Retrospective Studies , Pneumothorax/surgery , Treatment Outcome , Tracheal Diseases/diagnosis , Tracheal Diseases/epidemiology , Tracheal Diseases/etiology , Dyspnea
14.
Plants (Basel) ; 12(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37960107

ABSTRACT

Centipedegrass (Eremochloa ophiuroides (Munro.) Hack.) is a species originating in China and is an excellent warm-season turfgrass. As a native species in southern China, it is naturally distributed in the phosphorus-deficient and aluminum-toxic acid soil areas. It is important to research the molecular mechanism of centipedegrass responses to phosphorus-deficiency and/or aluminum-toxicity stress. Quantitative Real-Time PCR (qRT-PCR) is a common method for gene expression analysis, and the accuracy of qRT-PCR results depends heavily on the stability of internal reference genes. However, there are still no reported stable and effective reference genes for qRT-PCR analysis of target genes under the acid-soil-related stresses in different organs of centipedegrass. For scientific rigor, the gene used as a reference for any plant species and/or any stress conditions should be first systematically screened and evaluated. This study is the first to provide a group of reliable reference genes to quantify the expression levels of functional genes of Eremochloa ophiuroides under multiple stresses of P deficiency and/or aluminum toxicity. In this study, centipedegrass seedlings of the acid-soil-resistant strain 'E041' and acid-soil-sensitive strain 'E089' were used for qRT-PCR analysis. A total of 11 candidate reference genes (ACT, TUB, GAPDH, TIP41, CACS, HNR, EP, EF1α, EIF4α, PP2A and actin) were detected by qRT-PCR technology, and the stability of candidate genes was evaluated with the combination of four internal stability analysis software programs. The candidate reference genes exhibited differential stability of expression in roots, stems and leaves under phosphorus-deficiency and/or aluminum-toxicity stress. On the whole, the results showed that GAPDH, TIP41 and HNR were the most stable in the total of samples. In addition, for different tissues under various stresses, the selected reference genes were also different. CACS and PP2A were identified as two stable reference genes in roots through all three stress treatments (phosphate deficiency, aluminum toxicity, and the multiple stress treatment of aluminum toxicity and phosphate deficiency). Moreover, CACS was also stable as a reference gene in roots under each treatment (phosphate deficiency, aluminum toxicity, or multiple stresses of aluminum toxicity and phosphate deficiency). In stems under all three stress treatments, GAPDH and EIF4α were the most stable reference genes; for leaves, PP2A and TIP41 showed the two highest rankings in all three stress treatments. Finally, qRT-PCR analysis of the expression patterns of the target gene ALMT1 was performed to verify the selected reference genes. The application of the reference genes identified as internal controls for qRT-PCR analysis will enable accurate analysis of the target gene expression levels and expression patterns in centipedegrass under acid-soil-related stresses.

15.
ACS Nano ; 17(22): 22960-22978, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37930276

ABSTRACT

Infected bone defects (IBDs) exhibit impaired healing due to excessive inflammation triggered by pathogen-associated molecular patterns (PAMPs) from bacteria. As a vital factor in orchestrating immune responses, mitochondrial homeostasis maintenance is central to inflammation blockade. This research developed a chameleon-like nanoplatform by covering hydroxyapatite nanoparticles with a cerium ion coordinated tannic acid supramolecular network (HA@Ce-TA), which adaptively functions to regulate mitochondrial homeostasis based on intra- and extracellular environments. Extracellularly, acidic conditions activate HA@Ce-TA's peroxidase/oxidase-mimicking activity to produce reactive oxygen species (ROS), and external near-infrared (NIR) irradiation excites nanoscale Ce-TA to produce hyperthermia, which is found and explained by chemical computation. ROS production with photothermal therapy can eliminate bacteria effectively and reduce mitochondrial stress. Intracellularly, HA@Ce-TA remodels mitochondrial dynamics by upregulating mitochondrial fusion genes and eliminates excessive ROS by mimicking superoxidase/catalase. Consequently, this comprehensive modulation of mitochondrial homeostasis inhibits inflammasome overactivation. In vitro and in vivo studies showed HA@Ce-TA can modulate the mitochondria-centered inflammatory cascade to enhance IBD treatment, highlighting the potential of engineering nanotherapeutics to recalibrate mitochondrial homeostasis as an infected disease-modifying intervention.


Subject(s)
Mitochondria , Nanoparticles , Humans , Reactive Oxygen Species/pharmacology , Nanoparticles/chemistry , Antioxidants/pharmacology , Inflammation , Homeostasis
16.
Nat Commun ; 14(1): 6477, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838708

ABSTRACT

Bionic multifunctional structural materials that are lightweight, strong, and perceptible have shown great promise in sports, medicine, and aerospace applications. However, smart monitoring devices with integrated mechanical protection and piezoelectric induction are limited. Herein, we report a strategy to grow the recyclable and healable piezoelectric Rochelle salt crystals in 3D-printed cuttlebone-inspired structures to form a new composite for reinforcement smart monitoring devices. In addition to its remarkable mechanical and piezoelectric performance, the growth mechanisms, the recyclability, the sensitivity, and repairability of the 3D-printed Rochelle salt cuttlebone composite were studied. Furthermore, the versatility of composite has been explored and applied as smart sensor armor for football players and fall alarm knee pads, focusing on incorporated mechanical reinforcement and electrical self-sensing capabilities with data collection of the magnitude and distribution of impact forces, which offers new ideas for the design of next-generation smart monitoring electronics in sports, military, aerospace, and biomedical engineering.


Subject(s)
Sports , Wearable Electronic Devices , Electricity , Printing, Three-Dimensional
17.
Adv Healthc Mater ; 12(30): e2301733, 2023 12.
Article in English | MEDLINE | ID: mdl-37660274

ABSTRACT

Since the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported. TA provides pyrogallol and catechol groups to promote cell adherence. Besides, Ce3+ /Ce4+  conversion exhibits enzyme-mimetic activity to remove reactive oxygen species while generating O2 , therefore promoting anti-inflammatory M2 macrophage polarization to help create a regenerative environment. Minocycline is involved on the TA surface to create local drug storage for responsive antibiosis. Moreover, the underlying therapeutic mechanism is revealed whereby the coating exhibits exogenous antioxidation from the inherent properties of Ce and TA and endogenous antioxidation through mitochondrial homeostasis maintenance and antioxidases promotion. In addition, it stimulates integrin to activate PI3K/Akt and RhoA/ROCK pathways to enhance VEGF-mediated angiogenesis and tissue regeneration. Combining the antibiosis and multidimensional orchestration, TA-Ce-Mino repairs soft tissue barriers and effector cell differentiation, thereby isolating the immune microenvironment from pathogen invasion. Consequently, this study provides critical insight into the design and biological mechanism of abutment surface modification to prevent peri-implantitis.


Subject(s)
Peri-Implantitis , Humans , Peri-Implantitis/drug therapy , Peri-Implantitis/prevention & control , Minocycline , Antioxidants/pharmacology , Phosphatidylinositol 3-Kinases , Connective Tissue
18.
J Neurosci Nurs ; 55(5): 171-177, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37656664

ABSTRACT

ABSTRACT: BACKGROUND: With the improvement of technology and the advancement of medical treatment in recent decades, more and more pediatric medulloblastoma survivors reintegrate to the community. This study aimed to examine the experiences of pediatric medulloblastoma survivors. METHODS: A qualitative research was conducted. Twenty Chinese pediatric medulloblastoma survivors were interviewed. Interviews were recorded and transcribed. Colaizzi's analysis method was used to analyze data. RESULTS: There were 4 themes in this study: physical health issues, community reintegration challenges, overcoming psychological pressure, and multiple unmet needs. CONCLUSION: Pediatric medulloblastoma survivors face challenges in the physical, psychological, and social aspects of their health, along with multiple unmet healthcare needs. Nurses should comprehensively assess the survivor's needs from admission, plan for discharge, and provide regular follow-up care after discharge. Furthermore, nurses should collaborate with caregivers, clinicians, and schoolteachers to develop programs aimed at enhancing the quality of life for survivors. It is also important to explore the survival experiences of individuals in different regions.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Life Change Events , East Asian People , Medulloblastoma/therapy , Quality of Life , Qualitative Research , Survivors , Cerebellar Neoplasms/therapy
19.
Biochem Biophys Res Commun ; 679: 129-138, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37690423

ABSTRACT

Although the prognosis for papillary thyroid carcinoma (PTC) is generally good, a certain proportion of patients show recurrent or advanced disease, indicating the need for further development of targeted medications. The purpose of this study was to explore the interventional effects of colchicine on PTC and the potential mechanisms or targets. We obtained PTC-related targets from the database and colchicine targets by predicting them. We screened the common targets of colchicine and the PTC-related target histone deacetylase 1 (HDAC1) and verified through molecular docking that colchicine has a good affinity for HDAC1, i.e., colchicine may act on PTC by affecting HDAC1. We then used CCK-8, colony formation, mitochondrial membrane potential and apoptosis assays to confirm that colchicine could inhibit the proliferation and promote the apoptosis of PTC cells and verified by RT‒qPCR, Western blot, and cellular immunofluorescence assays that colchicine could inhibit the expression of HDAC1 in PTC cells. The cytotoxicity and inhibitory effect of colchicine on HDAC1 in PTC cells was stronger than that in normal thyroid cells. We then applied an HDAC1 inhibitor, pyroxamide, to verify that inhibition of HDAC1 inhibits proliferation and promotes apoptosis in PTC cells. Therefore, we conclude that colchicine can inhibit the proliferation and promote the apoptosis of PTC cells likely due to its inhibitory effect on HDAC1. This finding implies that colchicine may be helpful for therapeutic intervention in PTC and that HDAC1 may be a promising clinical therapeutic target.


Subject(s)
MicroRNAs , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , MicroRNAs/metabolism , Thyroid Neoplasms/genetics , Histone Deacetylase 1/metabolism , Colchicine/pharmacology , Molecular Docking Simulation , Cell Line, Tumor , Cell Proliferation , Apoptosis/physiology , Gene Expression Regulation, Neoplastic , Cell Movement
20.
Aging (Albany NY) ; 15(17): 8833-8850, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37695742

ABSTRACT

BACKGROUND: Breast cancer (BRCA) represents a significant threat with high mortality rates due to relapse, metastasis, and chemotherapy resistance. As a regulated cell death process characterized by the induction of immunogenic signals, immunogenic cell death (ICD) has been identified as an effective anti-tumorigenesis approach. However, the comprehensive study and its clinical value of ICD-related lncRNAs in BRCA is still missing. METHODS: The transcriptome matrix and corresponding clinical information of BRCA patients were obtained from The Cancer Genome Atlas (TCGA) database. Pearson correlation analysis was performed to identify ICD-related lncRNAs (ICDRLs). To determine the prognostic value of the identified ICDRLs, univariate Cox regression analysis, LASSO algorithm, and multivariate Cox regression analysis were employed to construct a risk model. The prognostic risk model was subsequently evaluated using univariate and multivariate Cox regression analysis, as well as Nomogram analysis. In vitro experiments were also conducted to validate the bioinformatics findings using quantitative real-time PCR (qRT-PCR). RESULTS: We established a prognostic risk signature consisting of five ICDRLs. The prognostic value of this model was subsequently confirmed in guiding BRCA prognostic stratification. Furthermore, we explored the correlation of the risk score with various clinical characteristics and chemotherapy response. qRT-PCR result confirmed the abnormal expression of ICDRLs, which was consistent with the bioinformatics data. CONCLUSIONS: Our findings provide evidence of the critical role of ICDRLs in BRCA and offer a novel perspective for exploring precise treatment options for BRCA patients.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/genetics , Immunogenic Cell Death , RNA, Long Noncoding/genetics , Neoplasm Recurrence, Local , Prognosis , Immunity , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...