Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1364442, 2024.
Article in English | MEDLINE | ID: mdl-38524129

ABSTRACT

Background: Non-alcoholic fatty liver disease (NAFLD), which includes simple steatosis (SS) and non-alcoholic steatohepatitis (NASH), is a significant contributor to liver disease on a global scale. The change of immunity-related genes (IRGs) expression level leads to different immune infiltrations. However, the expression of IRGs and possible regulatory mechanisms involved in NAFLD remain unclear. The objective of our research is to investigate crucial genes linked to the development of NAFLD and the transition from SS to NASH. Methods: Dataset GSE89632, which includes healthy controls, SS patients, and NASH patients, was obtained using the GEO database. To examine the correlation between sets of genes and clinical characteristics, we employed weighted gene co-expression network analysis (WGCNA) and differential expression analysis. Hub genes were extracted using a network of protein-protein interactions (PPI) and three different machine learning algorithms. To validate the findings, another dataset that is publicly accessible and mice that were subjected to a high-fat diet (HFD) or MCD diet were utilized. Furthermore, the ESTIMATE algorithm and ssGSEA were employed to investigate the immune landscape in the normal versus SS group and SS versus NASH group, additionally, the relationship between immune infiltration and the expression of hub genes was also examined. Results: A total of 28 immune related key genes were selected. Most of these genes expressed reverse patterns in the initial and progressive stages of NAFLD. GO and KEGG analyses showed that they were focused on the cytokine related pathways and immune cell activation and chemotaxis. After screening by various algorithms, we obtained two hub genes, including JUN and CCL20. Validation of these findings was confirmed by analyzing gene expression patterns in both the validation dataset and the mouse model. Ultimately, two hub genes were discovered to have a significant correlation with the infiltration of immune cells. Conclusion: We proposed that there were dynamic changes in the expression levels of IRGs in different stages of NAFLD disease, which led to different immune landscapes in SS and NASH. The findings of our research could serve as a guide for the accurate management of various phases of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Gene Expression Profiling , Diet, High-Fat
2.
Front Oncol ; 13: 1204715, 2023.
Article in English | MEDLINE | ID: mdl-37546394

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly malignant tumor that carries a significant risk of morbidity and mortality. This type of cancer is prevalent in Asia due to the widespread presence of risk factors. Unfortunately, HCC often goes undetected until it has reached an advanced stage, making early detection and treatment critical for better outcomes. Alpha-fetoprotein (AFP) is commonly used in clinical practice for diagnosing HCC, but its sensitivity and specificity are limited. While surgery and liver transplantation are the main radical treatments, drug therapy and local interventions are better options for patients with advanced HCC. Accurately assessing treatment efficacy and adjusting plans in a timely manner can significantly improve the prognosis of HCC. Non-coding RNA gene transcription products cannot participate in protein production, but they can regulate gene expression and protein function through the regulation of transcription and translation processes. These non-coding RNAs have been found to be associated with tumor development in various types of tumors. Noncoding RNA released by tumor or blood cells can circulate in the blood and serve as a biomarker for diagnosis, prognosis, and efficacy assessment. This article explores the unique role of circulating noncoding RNA in HCC from various perspectives.

3.
J Clin Transl Hepatol ; 11(5): 1170-1183, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37577231

ABSTRACT

Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.

4.
Front Pharmacol ; 14: 1166454, 2023.
Article in English | MEDLINE | ID: mdl-37229243

ABSTRACT

Background: Afatinib is an irreversible epidermal growth factor receptor tyrosine kinase inhibitor, and it plays a role in hepatocellular carcinoma (LIHC). This study aimed to screen a key gene associated with afatinib and identify its potential candidate drugs. Methods: We screened afatinib-associated differential expressed genes based on transcriptomic data of LIHC patients from The Cancer Genome Atlas, Gene Expression Omnibus, and the Hepatocellular Carcinoma Database (HCCDB). By using the Genomics of Drug Sensitivity in Cancer 2 database, we determined candidate genes using analysis of the correlation between differential genes and half-maximal inhibitory concentration. Survival analysis of candidate genes was performed in the TCGA dataset and validated in HCCDB18 and GSE14520 datasets. Immune characteristic analysis identified a key gene, and we found potential candidate drugs using CellMiner. We also evaluated the correlation between the expression of ADH1B and its methylation level. Furthermore, Western blot analysis was performed to validate the expression of ADH1B in normal hepatocytes LO2 and LIHC cell line HepG2. Results: We screened eight potential candidate genes (ASPM, CDK4, PTMA, TAT, ADH1B, ANXA10, OGDHL, and PON1) associated with afatinib. Patients with higher ASPM, CDK4, PTMA, and TAT exhibited poor prognosis, while those with lower ADH1B, ANXA10, OGDHL, and PON1 had unfavorable prognosis. Next, ADH1B was identified as a key gene negatively correlated with the immune score. The expression of ADH1B was distinctly downregulated in tumor tissues of pan-cancer. The expression of ADH1B was negatively correlated with ADH1B methylation. Small-molecule drugs panobinostat, oxaliplatin, ixabepilone, and seliciclib were significantly associated with ADH1B. The protein level of ADH1B was significantly downregulated in HepG2 cells compared with LO2 cells. Conclusion: Our study provides ADH1B as a key afatinib-related gene, which is associated with the immune microenvironment and can be used to predict the prognosis of LIHC. It is also a potential target of candidate drugs, sharing a promising approach to the development of novel drugs for the treatment of LIHC.

5.
Cancers (Basel) ; 15(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37046749

ABSTRACT

As the primary type of liver cancer, hepatocellular carcinoma (HCC) causes a large number of deaths every year. Despite extensive research conducted on this disease, the prognosis of HCC remains unclear. Recently, research has largely focused on extracellular vesicles (EVs), and they have been found to participate in various ways in the development of various diseases, including HCC, such as by regulating cell signaling pathways. However, recent studies have reported the mechanisms underlying the regulation of Wnt signaling by EVs in HCC, primarily focusing on the regulation of the canonical pathways. This review summarizes the current literature on the regulation of Wnt signaling by EVs in HCC and their underlying mechanisms. In addition, we also present future research directions in this field. This will deepen the understanding of HCC and provide new ideas for its treatment.

6.
Front Pharmacol ; 14: 1146280, 2023.
Article in English | MEDLINE | ID: mdl-37007021

ABSTRACT

Background: Immunotherapy has been a key option for the treatment of many types of cancer. A positive response to immunotherapy is heavily dependent on tumor microenvironment (TME) interaction. However, in pancreatic adenocarcinoma (PAAD), the association between TME mode of action and immune cell infiltration and immunotherapy, clinical outcome remained unknown. Methods: We systematically evaluated 29 TME genes in PAAD signature. Molecular subtypes of distinct TME signatures in PAAD were characterized by consensus clustering. After this, we comprehensively analyzed their clinical features, prognosis, and immunotherapy/chemotherapy response using correlation analysis, Kaplan-Meier curves analysis, ssGSEA analysis. 12 programmed cell death (PCD) patterns were acquired from previous study. Differentially expressed genes (DEGs) were acquired based on differential analysis. Key genes affecting overall survival (OS) of PAAD were screened by COX regression analysis and used to develop a RiskScore evaluation model. Finally, we assessed the value of RiskScore in predicting prognosis and treatment response in PAAD. Results: We identified 3 patterns of TME-associated molecular subtypes (C1, C2, C3), and observed that clinicopathological characteristics, prognosis, pathway features and immune features, immunotherapy/chemosensitivity of patients were correlated with the TME related subtypes. C1 subtype was more sensitive to the four chemotherapeutic drugs. PCD patterns were more likely to occur at C2 or C3. At the same time, we also detected 6 key genes that could affect the prognosis of PAAD, and 5 genes expressions were closely associated to methylation level. Low-risk patients with high immunocompetence had favorable prognostic results and high immunotherapy benefit. Patients in the high-risk group were more sensitive to chemotherapeutic drugs. RiskScore related to TME was an independent prognostic factor for PAAD. Conclusion: Collectively, we identified a prognostic signature of TME in PAAD patients, which could help elucidate the specific mechanism of action of TME in tumors and help to explore more effective immunotherapy strategies.

7.
J Clin Transl Hepatol ; 10(3): 496-508, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35836772

ABSTRACT

Hepatocellular carcinoma (HCC) has become a challenging disease worldwide. There are still limitations in the diagnosis and treatment of HCC, and its high metastatic capacity and high recurrence rate are the main reasons for its poor prognosis. The ability of extracellular vesicles (EVs) to transfer functionally-active substances and their widespread presence in almost all body fluids suggest their unprecedented potential in the study of various cancers. The unique physicochemical properties of EVs determine their potential as antitumor vaccines and drug carriers. In the last decade, the study of EVs in HCC has evolved from a single hot topic to a system with considerable scale. This paper summarizes the role of EVs, especially exosomes, in the occurrence, metastasis and tumor immunity of HCC, reviews their applications in tumor diagnosis, prognosis and treatment, describes the pros and cons of these studies, and looks forward towards the future research directions of EVs in HCC.

8.
Front Oncol ; 11: 714665, 2021.
Article in English | MEDLINE | ID: mdl-34540684

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. In view of the lack of early obvious clinical symptoms and related early diagnostic biomarkers with high specificity and sensitivity, most HCC patients are already at the advanced stages at the time of diagnosis, and most of them are accompanied by distant metastasis. Furthermore, the unsatisfactory effect of the follow-up palliative care contributes to the poor overall survival of HCC patients. Therefore, it is urgent to identify effective early diagnosis and prognostic biomarkers and to explore novel therapeutic approaches to improve the prognosis of HCC patients. Circular RNA (CircRNA), a class of plentiful, stable, and highly conserved ncRNA subgroup with the covalent closed loop, is dysregulated in HCC. Increasingly, emerging evidence have confirmed that dysregulated circRNAs can regulate gene expression at the transcriptional or post-transcriptional level, mediating various malignant biological behaviors of HCC cells, including proliferation, invasion, metastasis, immune escape, stemness, and drug resistance, etc.; meanwhile, they are regarded as potential biomarkers for early diagnosis and prognostic evaluation of HCC. This article reviews the research progress of circRNAs in HCC, expounding the potential molecular mechanisms of dysregulated circRNAs in the carcinogenesis and development of HCC, and discusses those application prospects in the diagnosis and prognosis of HCC.

9.
Biomed Pharmacother ; 138: 111529, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34311529

ABSTRACT

Hepatocellular carcinoma (HCC) has become a challenging disease in the world today. Due to the limitations on the current diagnosis and treatment as well as its high metastatic ability and high recurrence rate, HCC gradually becomes the second deadliest tumor. Exosomes are one of the types of cell-derived vesicles and can carry intracellular materials such as genetic materials, lipids, and proteins. In recent years, it has been verified that exosomes are linked to numerous physiological and pathological processes, including HCC. However, how exosomes affect HCC progression remains largely unknown. In this review, the exosome-mediated cellular material transfer between cells of different types in the HCC microenvironment and their effects on the behaviors and functions of recipient cells are studied. Furthermore, we also addressed the underlying molecular mechanisms. We believe that new light on the diagnosis of this cancer as well as its treatment strategies will be shed after a collation of literature in this area.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Cell Communication , Exosomes/metabolism , Liver Neoplasms/metabolism , Tumor Microenvironment , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/therapy , Drug Carriers , Exosomes/genetics , Exosomes/pathology , Exosomes/transplantation , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Liver Neoplasms/therapy , Predictive Value of Tests , Signal Transduction
10.
Biomed Pharmacother ; 141: 111889, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34323697

ABSTRACT

Long non-coding RNA (lncRNA), a subgroup of ncRNA with a length of more than 200 nt without protein coding function, has been recognized by the academia for its mediating effects of dysregulated expression on the tumorigenesis and development of a variety of tumors. LncRNA DiGeorge syndrome critical region gene 5 (DGCR5), originally found to induce DiGeorge syndrome, has been confirmed to be extremely dysregulated in multiple tumors, which mediates the malignant phenotypes of hepatocellular carcinoma, pancreatic cancer, lung cancer, etc. through the regulation of Wnt/ß-catenin, MEK/ERK1/2 and other cancerous signaling pathways as a molecular sponge. Researches on the cancerous derivation-related pathways involved in DGCR5 can provide potential molecular intervention targets for tumor precision treatment. Moreover, liquid biopsy based on the detection of DGCR5 in body fluids is also expected to provide a non-invasive evaluation method for the early diagnosis and prognostic evaluation of malignant tumors.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , DiGeorge Syndrome/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Apoptosis/physiology , Biomarkers, Tumor/biosynthesis , Carcinogenesis/metabolism , Cell Proliferation/physiology , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/metabolism , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , RNA, Long Noncoding/biosynthesis
11.
Front Oncol ; 11: 653846, 2021.
Article in English | MEDLINE | ID: mdl-33869059

ABSTRACT

Exosomes are small extracellular vesicles secreted by most somatic cells, which can carry a variety of biologically active substances to participate in intercellular communication and regulate the pathophysiological process of recipient cells. Recent studies have confirmed that non-coding RNAs (ncRNAs) carried by tumor cell/non-tumor cell-derived exosomes have the function of regulating the cancerous derivation of target cells and remodeling the tumor microenvironment (TME). In addition, due to the unique low immunogenicity and high stability, exosomes can be used as natural vehicles for the delivery of therapeutic ncRNAs in vivo. This article aims to review the potential regulatory mechanism and the therapeutic value of exosomal ncRNAs in hepatocellular carcinoma (HCC), in order to provide promising targets for early diagnosis and precise therapy of HCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...