Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304473, 2024.
Article in English | MEDLINE | ID: mdl-38848350

ABSTRACT

PURPOSE: We performed a meta-analysis to identify risk factors affecting spinal fusion. METHODS: We systematically searched PubMed, Embase, and the Cochrane Library from inception to January 6, 2023, for articles that report risk factors affecting spinal fusion. The pooled odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using fixed-effects models for each factor for which the interstudy heterogeneity I2 was < 50%, while random-effects models were used when the interstudy heterogeneity I2 was ≥ 50%. Using sample size, Egger's P value, and heterogeneity across studies as criteria, we categorized the quality of evidence from observational studies as high-quality (Class I), moderate-quality (Class II or III), or low-quality (Class IV). Furthermore, the trim-and-fill procedure and leave-one-out protocol were conducted to investigate potential sources of heterogeneity and verify result stability. RESULTS: Of the 1,257 citations screened, 39 unique cohort studies comprising 7,145 patients were included in the data synthesis. High-quality (Class I) evidence showed that patients with a smoking habit (OR, 1.57; 95% CI, 1.11 to 2.21) and without the use of bone morphogenetic protein-2 (BMP-2) (OR, 4.42; 95% CI, 3.33 to 5.86) were at higher risk for fusion failure. Moderate-quality (Class II or III) evidence showed that fusion failure was significantly associated with vitamin D deficiency (OR, 2.46; 95% CI, 1.24 to 4.90), diabetes (OR, 3.42; 95% CI, 1.59 to 7.36), allograft (OR, 1.82; 95% CI, 1.11 to 2.96), conventional pedicle screw (CPS) fixation (OR, 4.77; 95% CI, 2.23 to 10.20) and posterolateral fusion (OR, 3.63; 95% CI, 1.25 to 10.49). CONCLUSIONS: Conspicuous risk factors affecting spinal fusion include three patient-related risk factors (smoking, vitamin D deficiency, and diabetes) and four surgery-related risk factors (without the use of BMP-2, allograft, CPS fixation, and posterolateral fusion). These findings may help clinicians strengthen awareness for early intervention in patients at high risk of developing fusion failure.


Subject(s)
Spinal Fusion , Spinal Fusion/adverse effects , Humans , Risk Factors , Cohort Studies , Bone Morphogenetic Protein 2 , Smoking/adverse effects
2.
Int J Biol Macromol ; 264(Pt 1): 130522, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428777

ABSTRACT

Kudzu, a plant known for its medicinal value and health benefits, is typically consumed in the form of starch. However, the use of native kudzu starch is limited by its high pasting temperature and low solubility, leading to a poor consumer experience. In this study, kudzu starch was treated using six modification techniques: ball milling, extrusion puffing, alcoholic-alkaline, urea-alkaline, pullulanase, and extrusion puffing-pullulanase. The results of the Fourier transform infrared spectrum showed that the intensity ratio of 1047/1022 cm-1 for the modified starches (1.02-1.21) was lower than that of the native kudzu starch (1.22). The relative crystallinity of modified kudzu starch significantly decreased, especially after ball milling, extrusion puffing, and alcoholic-alkaline treatment. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed significant changes in the granular structures of the modified starches. After modification, the pasting temperature of kudzu starch decreased (except for the urea-alkaline treatment), and the apparent viscosity of kudzu starch decreased from 517.95 Pa·s to 0.47 Pa·s. The cold-water solubility of extrusion-puffing and extrusion puffing-pullulanase modified kudzu starch was >70 %, which was significantly higher than that of the native starch (0.11 %). These findings establish a theoretical basis for the potential development of instant kudzu powder.


Subject(s)
Pueraria , Starch , Starch/chemistry , Solubility , Pueraria/chemistry , Viscosity , Water/chemistry , Urea
3.
Int J Biol Macromol ; 255: 128277, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992918

ABSTRACT

In this research, the effects of cationization, acetylation and dual modification by cationization and acetylation on the physicochemical and structural characteristics of glutinous rice starches were investigated. The rapid viscosity analyzer revealed a substantial increased paste viscosity post modification. Particularly, for dually modified starch, the peak viscosity increased from 3071.67 to 4082.00 cP. The freeze-thaw stability substantially enhanced, with both single cationic and dually-modified starches standing out by exhibiting no water syneresis even at 21 freeze-thaw cycles, while native starch exhibited higher syneresis, up to 74.55 %. Both single cationization and cationization-acetylation destroyed the starch granules, characterized by the roughness and cracks. But, for single acetylation, there was no notable changes on granules' morphology. Fourier transform infrared spectroscopy exhibited notable shifts after modification, both acetylation and dual modification, resulting in a new peak at 1728 cm-1. 13C cross-polarization magic angle spinning nuclear magnetic resonance spectra displayed new peaks at 52-55 and 19-22 ppm following cationization and acetylation, respectively. These structural alterations indicate the successful incorporation of functional groups during modification. Overall, this study provides valuable insights for the industrial utilization of these three modified glutinous rice starches.


Subject(s)
Oryza , Oryza/chemistry , Acetylation , Starch/chemistry , Viscosity , Magnetic Resonance Spectroscopy
4.
Polymers (Basel) ; 15(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37447580

ABSTRACT

Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...