Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Gland Surg ; 13(5): 640-653, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38845837

ABSTRACT

Background: Breast-conserving surgery (BCS) stands as the favored modality for treating early-stage breast cancer. Accurately forecasting the feasibility of BCS preoperatively can aid in surgical planning and reduce the rate of switching of surgical methods and reoperation. The objective of this study is to identify the radiomics features and preoperative breast magnetic resonance imaging (MRI) characteristics that are linked with positive margins following BCS in patients with breast cancer, with the ultimate aim of creating a predictive model for the feasibility of BCS. Methods: This study included a cohort of 221 pretreatment MRI images obtained from patients with breast cancer. A total of seven MRI semantic features and 1,561 radiomics features of lesions were extracted. The feature subset was determined by eliminating redundancy and correlation based on the features of the training set. The least absolute shrinkage and selection operator (LASSO) logistic regression was then trained with this subset to classify the final BCS positive and negative margins and subsequently validated using the test set. Results: Seven features were significant in the discrimination of cases achieving positive and negative margins. The radiomics signature achieved area under the curve (AUC), accuracy, sensitivity, and specificity of 0.760 [95% confidence interval (CI): 0.630, 0.891], 0.712 (95% CI: 0.569, 0.829), 0.882 (95% CI: 0.623, 0.979) and 0.629 (95% CI: 0.449, 0.780) in the test set, respectively. The combined model of radiomics signature and background parenchymal enhancement (BPE) demonstrated an AUC, accuracy, sensitivity, and specificity of 0.759 (95% CI: 0.628, 0.890), 0.654 (95% CI: 0.509, 0.780), 0.679 (95% CI: 0.476, 0.834) and 0.625 (95% CI: 0.408, 0.804). Conclusions: The combination of preoperative MRI radiomics features can well predict the success of breast conserving surgery.

3.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730303

ABSTRACT

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Subject(s)
Insect Vectors , Phylogeny , RNA, Ribosomal, 18S , Triatoma , Trypanosoma , Animals , China/epidemiology , Rats , Mice , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Triatoma/parasitology , RNA, Ribosomal, 18S/genetics , Insect Vectors/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Feces/parasitology , HSP70 Heat-Shock Proteins/genetics , DNA, Protozoan/genetics , Female , Male
4.
Acta Pharm Sin B ; 14(5): 2263-2280, 2024 May.
Article in English | MEDLINE | ID: mdl-38799639

ABSTRACT

Chemotherapeutics can induce immunogenic cell death (ICD) in tumor cells, offering new possibilities for cancer therapy. However, the efficiency of the immune response generated is insufficient due to the inhibitory nature of the tumor microenvironment (TME). Here, we developed a pH/reactive oxygen species (ROS) dual-response system to enhance chemoimmunotherapy for melanoma. The system productively accumulated in tumors by specific binding of phenylboronic acid (PBA) to sialic acids (SA). The nanoparticles (NPs) rapidly swelled and released quercetin (QUE) and doxorubicin (DOX) upon the stimulation of tumor microenvironment (TME). The in vitro and in vivo results consistently demonstrated that the NPs improved anti-tumor efficacy and prolonged survival of mice, significantly enhancing the effects of the combination. Our study revealed DOX was an ICD inducer, stimulating immune responses and promoting maturation of dendritic cells (DCs). Additionally, QUE served as a TME regulator by inhibiting the cyclooxygenase-2 (COX2)-prostaglandin E2 (PGE2) axis, which influenced various immune cells, including increasing cytotoxic T cells (CLTs) infiltration, promoting M1 macrophage polarization, and reducing regulatory T cells (Tregs) infiltration. The combination synergistically facilitated chemoimmunotherapy efficacy by remodeling the immunosuppressive microenvironment. This work presents a promising strategy to increase anti-tumor efficiency of chemotherapeutic agents.

5.
Toxicology ; 505: 153844, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38801937

ABSTRACT

Tributyltin chloride (TBTC) is a ubiquitous environmental pollutant with various adverse effects on human health. Exosomes are cell - derived signaling and substance transport vesicles. This investigation aimed to explore whether exosomes could impact the toxic effects caused by TBTC via their transport function. Cytotoxicity, DNA and chromosome damage caused by TBTC on MCF-7 cells were analyzed with CCK-8, flow cytometry, comet assay and micronucleus tests, respectively. Exosomal characterization and quantitative analysis were performed with ultracentrifugation, transmission electron microscope (TEM) and bicinchoninic acid (BCA) methods. TBTC content in exosomes was detected with Liquid Chromatography-Mass Spectrometry (LC-MS). The impacts of exosomal secretion on the toxic effects of TBTC were analyzed. Our data indicated that TBTC caused significant cytotoxicity, DNA and chromosome damage effects on MCF-7 cells, and a significantly increased exosomal secretion. Importantly, TBTC could be transported out of MCF-7 cells by exosomes. Further, when exosomal secretion was blocked with GW4869, the toxic effects of TBTC were significantly exacerbated. We concluded that TBTC promoted exosomal secretion, which in turn transported TBTC out of the source cells to alleviate its toxic effects. This investigation provided a novel insight into the role and mechanism of exosomal release under TBTC stress.


Subject(s)
DNA Damage , Exosomes , Trialkyltin Compounds , Humans , Exosomes/drug effects , Exosomes/metabolism , Trialkyltin Compounds/toxicity , MCF-7 Cells , DNA Damage/drug effects , Biological Transport/drug effects , Environmental Pollutants/toxicity , Cell Survival/drug effects
6.
Front Cell Infect Microbiol ; 14: 1390104, 2024.
Article in English | MEDLINE | ID: mdl-38741891

ABSTRACT

Introduction: Zinc (Zn) is an essential trace element in animals, but excessive intake can lead to renal toxicity damage. Thus, the exploration of effective natural antagonists to reduce the toxicity caused by Zn has become a major scientific problem. Methods: Here, we found that hesperidin could effectively alleviate the renal toxicity induced by Zn in pigs by using hematoxylin-eosin staining, transmission electron microscope, immunohistochemistry, fluorescence quantitative PCR, and microfloral DNA sequencing. Results: The results showed that hesperidin could effectively attenuate the pathological injury in kidney, and reduce autophagy and apoptosis induced by Zn, which evidenced by the downregulation of LC3, ATG5, Bak1, Bax, Caspase-3 and upregulation of p62 and Bcl2. Additionally, hesperidin could reverse colon injury and the decrease of ZO-1 protein expression. Interestingly, hesperidin restored the intestinal flora structure disturbed by Zn, and significantly reduced the abundance of Tenericutes (phylum level) and Christensenella (genus level). Discussion: Thus, altered intestinal flora and intestinal barrier function constitute the gut-kidney axis, which is involved in hesperidin alleviating Zn-induced nephrotoxicity. Our study provides theoretical basis and practical significance of hesperidin for the prevention and treatment of Zn-induced nephrotoxicity through gut-kidney axis.


Subject(s)
Apoptosis , Gastrointestinal Microbiome , Hesperidin , Kidney , Zinc , Animals , Hesperidin/pharmacology , Swine , Zinc/metabolism , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Apoptosis/drug effects , Gastrointestinal Microbiome/drug effects , Autophagy/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control
7.
Heliyon ; 10(7): e28496, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601520

ABSTRACT

Background: The prognostic effects of different treatment modalities on patients with hypopharyngeal squamous cell carcinoma (HPSCC) remain unclear. Methods: HPSCC patients diagnosed and treated at either West China Hospital or Sichuan Cancer Hospital between January 1, 2009, and December 31, 2019, were enrolled in this retrospective, real-world study. Survival rates were presented using Kaplan-Meier curves and compared using log-rank tests. Univariable and multivariable Cox proportional hazards regression models were used to identify the predictors of overall survival (OS). Subgroup analyses were conducted for patients with advanced-stage HPSCC (stages III and IV and category T4). Results: A total of 527 patients with HPSCC were included. Patients receiving SRC (surgery, radiotherapy [RT], and chemotherapy) showed the best OS (p < 0.0001). In comparison with RT alone, both surgery alone (all cases: hazard ratio [HR] = 0.39, p = 0.0018; stage IV cases: HR = 0.38, p = 0.0085) and surgery-based multimodality treatment (SBMT; all cases: HR = 0.27, p < 0.0001; stage IV cases: HR = 0.30, p = 0.00025) showed prognostic benefits, while SBMT also showed survival priority over chemoradiotherapy (CRT; all cases: HR = 0.52, p < 0.0001; stage IV cases: HR = 0.59, p = 0.0033). Moreover, patients who underwent surgery alone had comparable OS to those who underwent SBMT (all patients: p = 0.13; stage IV cases: p = 0.34), while CRT yielded similar prognostic outcomes as RT alone (all patients: p = 0.054; stage IV cases: p = 0.11). Conclusions: Surgery alone was comparable to SBMT and superior to RT/CRT in terms of OS in patients with HPSCC. We suggest that surgery should be encouraged for the treatment of HPSCC, even in patients with advanced-stage disease.

8.
Nano Lett ; 24(15): 4537-4545, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568783

ABSTRACT

An interfacial solar steam generation evaporator for seawater desalination has attracted extensive interest in recent years. Nevertheless, challenges still remain in relatively low evaporation rate, unsatisfactory energy conversion efficiency, and salt accumulation. Herein, we have demonstrated a biomimetic bilayer composite aerogel consisting of bottom hydrophilic and vertically aligned EVOH channels and an upper hydrophobic conical Fe3O4 array. Thanks to the design merits, the 3D Fe3O4/V-EVOH evaporator exhibits a high evaporation rate of ∼2.446 kg m-2 h-1 and an impressive solar energy conversion efficiency of ∼165.5% under 1 sun illumination, which is superior to those of state-of-the-art evaporators reported so far. Moreover, the asymmetrical wettability not only allows the evaporator to self-float on the water but also facilitates the salt ion diffusion in the channels; thus, the evaporator shows no salt crystals on its surface and only a 6% decrease in evaporation performance even after the salt concentration increases from 0 to 10.0 wt %.

9.
Ecotoxicol Environ Saf ; 276: 116322, 2024 May.
Article in English | MEDLINE | ID: mdl-38636258

ABSTRACT

Lead is a widespread environmental pollutant with serious adverse effects on human health, but the mechanism underlying its toxicity remains elusive. This study aimed to investigate the role of miR-584-5p / Ykt6 axis in the toxic effect of lead on HK-2 cells and the related mechanism. Our data suggested that lead exposure caused significant cytotoxicity, DNA and chromosome damage to HK-2 cells. Mechanistically, lead exposure down-regulated miR-584-5p and up-regulated Ykt6 expression, consequently, autophagosomal number and autophagic flux increased, lysosomal number and activity decreased, exosomal secretion increased. Interestingly, when miR-584-5p level was enhanced with mimic, autophagosomal number and autophagic flux decreased, lysosomal number and activity increased, ultimately, exosomal secretion was down-regulated, which resulted in significant aggravated toxic effects of lead. Further, directly blocking exosomal secretion with inhibitor GW4869 also resulted in exacerbated toxic effects of lead. Herein, we conclude that miR-584-5p / Ykt6 - mediated autophagy - lysosome - exosome pathway may be a critical route affecting the toxic effects of lead on HK-2 cells. We provide a novel insight into the mechanism underlying the toxicity of lead on human cells.


Subject(s)
Autophagy , Exosomes , Lead , Lysosomes , MicroRNAs , Humans , Autophagy/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/drug effects , Exosomes/metabolism , Lysosomes/drug effects , Cell Line , Lead/toxicity , Environmental Pollutants/toxicity , Vacuolar Proton-Translocating ATPases/genetics , DNA Damage
10.
Toxicology ; 504: 153795, 2024 May.
Article in English | MEDLINE | ID: mdl-38574842

ABSTRACT

The mechanistic target of rapamycin (RAPA) complex 1 (mTORC1) - transcription factor EB (TFEB) pathway plays a crucial role in response to nutritional status, energy and environmental stress for maintaining cellular homeostasis. But there is few reports on its role in the toxic effects of arsenic exposure and the related mechanisms. Here, we show that the exposure of bronchial epithelial cells (BEAS-2B) to sodium arsenite promoted the activation of mTORC1 (p-mTORC1) and the inactivation of TFEB (p-TFEB), the number and activity of lysosomes decreased, the content of reduced glutathione (GSH) and superoxide dismutase (SOD) decreased, the content of malondialdehyde (MDA) increased, the DNA and chromosome damage elevated. Further, when mTORC1 was inhibited with RAPA, p-mTORC1 and p-TFEB down-regulated, GSH and SOD increased, MDA decreased, the DNA and chromosome damage reduced significantly, as compared with the control group. Our data revealed for the first time that mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells, and it may be a potential intervention target for the toxic effects of arsenic.


Subject(s)
Arsenites , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , DNA Damage , Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Oxidative Stress , Sodium Compounds , Arsenites/toxicity , Sodium Compounds/toxicity , Oxidative Stress/drug effects , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Lysosomes/drug effects , Lysosomes/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Line , DNA Damage/drug effects , TOR Serine-Threonine Kinases/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Signal Transduction/drug effects , Bronchi/drug effects , Bronchi/metabolism , Bronchi/cytology , Bronchi/pathology , Glutathione/metabolism , Superoxide Dismutase/metabolism , Multiprotein Complexes/metabolism , Malondialdehyde/metabolism
11.
Front Microbiol ; 15: 1272062, 2024.
Article in English | MEDLINE | ID: mdl-38495514

ABSTRACT

Viable microorganisms and a diverse microbial ecosystem found in human milk play a crucial role in promoting healthy immune system and shaping the microbial community in the infant's gut. Culturomics is a method to obtain a comprehensive repertoire of human milk microbiota. However, culturomics is an onerous procedure, and needs expertise, making it difficult to be widely implemented. Currently, there is no efficient and feasible culturomics method specifically designed for human milk microbiota yet. Therefore, the aim of this study was to develop a more efficient and feasible culturomics method specifically designed for human milk microbiota. We obtained fresh samples of human milk from healthy Chinese mothers and conducted a 27-day enrichment process using blood culture bottles. Bacterial isolates were harvested at different time intervals and cultured on four different types of media. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, we identified a total of 6601 colonies and successfully obtained 865 strains, representing 4 phyla, 21 genera, and 54 species. By combining CBA and MRS media, we were able to cultivate over 94.4% of bacterial species with high diversity, including species-specific microorganisms. Prolonged pre-incubation in blood culture bottles significantly increased the number of bacterial species by about 33% and improved the isolation efficiency of beneficial bacteria with low abundance in human milk. After optimization, we reduced the pre-incubation time in blood culture bottles and selected optimal picking time-points (0, 3, and 6 days) at 37°C. By testing 6601 colonies using MALDI-TOF MS, we estimated that this new protocol could obtain more than 90% of bacterial species, reducing the workload by 57.0%. In conclusion, our new culturomics strategy, which involves the combination of CBA and MRS media, extended pre-incubation enrichment, and optimized picking time-points, is a feasible method for studying the human milk microbiota. This protocol significantly improves the efficiency of culturomics and allows for the establishment of a comprehensive repertoire of bacterial species and strains in human milk.

12.
Environ Toxicol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480676

ABSTRACT

Ovarian cancer (OC), known for its pronounced heterogeneity, has long evaded a unified classification system despite extensive research efforts. This study integrated five distinct multi-omics datasets from eight multicentric cohorts, applying a combination of ten clustering algorithms and ninety-nine machine learning models. This methodology has enabled us to refine the molecular subtyping of OC, leading to the development of a novel Consensus Machine Learning-driven Signature (CMLS). Our analysis delineated two prognostically significant cancer subtypes (CS), each marked by unique genetic and immunological signatures. Notably, CS1 is associated with an adverse prognosis. Leveraging a subtype classifier, we identified five key genes (CTHRC1, SPEF1, SCGB3A1, FOXJ1, and C1orf194) instrumental in constructing the CMLS. Patients classified within the high CMLS group exhibited a poorer prognosis and were characterized by a "cold tumor" phenotype, indicative of an immunosuppressive microenvironment rich in MDSCs, CAFs, and Tregs. Intriguingly, this group also presented higher levels of tumor mutation burden (TMB) and tumor neoantigen burden (TNB), factors that correlated with a more favorable response to immunotherapy compared to their low CMLS counterparts. In contrast, the low CMLS group, despite also displaying a "cold tumor" phenotype, showed a favorable prognosis and a heightened responsiveness to chemotherapy. This study's findings underscore the potential of targeting immune-suppressive cells, particularly in patients with high CMLS, as a strategic approach to enhance OC prognosis. Furthermore, the redefined molecular subtypes and risk stratification, achieved through sophisticated multi-omics analysis, provide a framework for the selection of therapeutic agents.

13.
Protoplasma ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418654

ABSTRACT

Transient transformation is extremely useful for rapid in vivo assessment of gene function, especially for fruit-related genes. Grape berry, while an important fruit crop, is recalcitrant to transient transformation, due to the high turgor pressure in its mesocarp cells that limits the ability of Agrobacterium to penetrate into the tissue. It is urgent to establish a simple transient transformation system for rapid analysis of gene function. In this study, different injection methods, grape genotypes, and developmental stages were tested in order to develop a rapid and efficient Agrobacterium-mediated transient transformation methodology for grape berries. Two injection methods, namely punch injection and direct injection, were evaluated using the ß-glucuronidase (GUS) gene and by x-gluc tissue staining and 4-methylumbelliferyl-ß-D-glucuronide fluorescence analysis. The results indicated that there were no significant differences on transformation effects between the two methods, but the latter was more suitable because of its simplicity and convenience. Six grape cultivars ('Hanxiangmi', 'Moldova', 'Zijixin', 'Jumeigui', 'Shine-Muscat', and 'A17') were tested for transient transformation. 'Hanxiangmi', 'Moldova', and 'Zijixin' grape berries were not suitable for agroinfiltration due to frequently fruit cracking, browning, and formation of scar skin. The fruit integrity rates of 'Jumeigui', 'Shine-Muscat', and 'A17' berries were all above 80%, and GUS activity was detected in the berries of the three cultivars 3-14 days after injection with the Agrobacterium culture, while higher GUS activities were observed in the 'Jumeigui' berries. The levels of GUS activity in injected berries at 7-8 weeks after full blooming (WAFB) were more than twice at 6 WAFB. In subsequent assays, the over-expression of MYB transcription factor VvMYB44 via transient transformation accelerated the anthocyanin accumulation and fruit coloring through raising the expression levels of VvLAR1, VvUFGT, VvLDOX, VvANS, and VvDFR, which verified the effectiveness of this transformation system. These experiments finally identified the reliable grape cultivars and suitable operational approach for transient transformation and further indicated that this Agrobacterium-mediated transient transformation system was efficient and suitable for the elucidation of gene function in grape berries.

14.
BMC Microbiol ; 24(1): 15, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183000

ABSTRACT

BACKGROUND: This study aimed to isolate the rumen-derived bacteria with the ability to degrade free gossypol (FG), and to evaluate the probiotic potential in vitro for ensuring safe utilization. METHODS: The strains were anaerobically isolated from fresh rumen fluid of sheep with long-term fed cottonseed meal (CSM) with the screening agar medium containing gossypol as the sole carbon source. Afterwards, the isolated strain incubated with CSM was subjected to the determination of the FG degradation and in vitro evaluation of probiotic characteristics. RESULTS: The target strain labeled Lact. mucosae LLK-XR1 [Accession number: OQ652016.1] was obtained, and its growth on MRS Liquid medium exhibited degradation efficiency of FG up to 69.5% which was significantly greater than its growth on Man-Rogosa-Sharpe medium with glucose free for 24 h (p < 0.01). Meanwhile, LLK-XR1 showed 40.652% degradation rate of FG for unautoclaved, non-pulverized, and no additional nutrients supplementation CSM. Furthermore, LLK-XR1 presented good survivability at pH 3.0 (above 88.6%), and 0.3% bile (78.5%). LLK-XR1 showed sensitivity to broad-spectrum antibiotics except Sulfamethoxazole, Ciprofloxacin and Gentamycin and significantly inhibited E. coli CICC 10,899, Staph. aureus CICC 21,600, and Salmonella. Typhimurium CICC 21,483. LLK-XR1 demonstrated good cell surface hydrophobicity and auto-aggregation ability. CONCLUSIONS: Taken together, this study for the first time noted that rumen-originated Lact. mucosae LLK-XR1 with probiotic properties exhibited substantial FG degradation capacity when it was applied to the solid-state fermentation of CSM.


Subject(s)
Gossypol , Probiotics , Humans , Male , Animals , Sheep , Cottonseed Oil , Escherichia coli , Fermentation , Rumen
15.
Nano Lett ; 24(2): 607-616, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38095305

ABSTRACT

In recent years, live-cell-based drug delivery systems have gained considerable attention. However, shear stress, which accompanies blood flow, may cause cell death and weaken the delivery performance. In this study, we found that reducing cholesterol in macrophage plasma membranes enhanced their tumor targeting ability by more than 2-fold. Our study demonstrates that the reduced cholesterol level deactivated the mammalian target of rapamycin (mTOR) and consequently promoted the nuclear translocation of transcription factor EB (TFEB), which in turn enhanced the expression of superoxide dismutase (SOD) to reduce reactive oxygen species (ROS) induced by shear stress. A proof-of-concept system using low cholesterol macrophages attached to MXene (e.g., l-RX) was fabricated. In a melanoma mouse model, l-RX and laser irradiation treatments eliminated tumors with no recurrences observed in mice. Therefore, cholesterol reduction is a simple and effective way to enhance the targeting performance of macrophage-based drug delivery systems.


Subject(s)
Macrophages , Superoxide Dismutase , Mice , Animals , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Drug Delivery Systems , Cholesterol/metabolism , Mammals/metabolism
16.
Int Wound J ; 21(1): e14384, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697692

ABSTRACT

Pathological scarring resulting from traumas and wounds, such as hypertrophic scars and keloids, pose significant aesthetic, functional and psychological challenges. This study provides a comprehensive transcriptomic analysis of these conditions, aiming to illuminate underlying molecular mechanisms and potential therapeutic targets. We employed a co-expression and module analysis tool to identify significant gene clusters associated with distinct pathophysiological processes and mechanisms, notably lipid metabolism, sebum production, cellular energy metabolism and skin barrier function. This examination yielded critical insights into several skin conditions including folliculitis, skin fibrosis, fibrosarcoma and congenital ichthyosis. Particular attention was paid to Module Cluster (MCluster) 3, encompassing genes like BLK, TRPV1 and GABRD, all displaying high expression and potential implications in immune modulation. Preliminary immunohistochemistry validation supported these findings, showing elevated expression of these genes in non-fibrotic samples rich in immune activity. The complex interplay of different cell types in scar formation, such as fibroblasts, myofibroblasts, keratinocytes and mast cells, was also explored, revealing promising therapeutic strategies. This study underscores the promise of targeted gene therapy for pathological scars, paving the way for more personalised therapeutic approaches. The results necessitate further research to fully ascertain the roles of these identified genes and pathways in skin disease pathogenesis and potential therapeutics. Nonetheless, our work forms a strong foundation for a new era of personalised medicine for patients suffering from pathological scarring.


Subject(s)
Cicatrix, Hypertrophic , Keloid , Humans , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/metabolism , Keloid/genetics , Keloid/therapy , Keratinocytes/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism
17.
J Hazard Mater ; 465: 133263, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38118200

ABSTRACT

Lead (Pb) and cadmium (Cd) are common heavy metal pollutants that are often found in the soil in soybean agricultural production, adversely impacting symbiotic nitrogen fixation in soybean nodules. In this study, the exposure of soybean nodules to Pb and Cd stress was found to reduce nitrogenase activity. Shifts in the RNA methylation profiles of nodules were subsequently examined by profiling the differential expression of genes responsible for regulating m6A modifications and conducting transcriptome-wide analyses of m6A methylation profiles under Pb and Cd stress condition. Differentially methylated genes (DMGs) that were differentially expressed were closely related to reactive oxygen species activity and integral membrane components. Overall, 19 differentially expressed DMGs were ultimately determined to be responsive to both Pb and Cd stress, including Glyma.20G082450, which encodes GmAMT1;1 and was confirmed to be a positive regulator of nodules tolerance to Pb and Cd. Together, these results are the first published data corresponding to transcriptome-wide m6A methylation patterns in soybean nodules exposed to Cd and Pb stress, and provide novel molecular insight into the regulation of Pb and Cd stress responses in nodules, highlighting promising candidate genes related to heavy metal tolerance, that may also be amenable to application in agricultural production. ENVIRONMENTAL IMPLICATIONS: Lead (Pb) and cadmium (Cd) are prevalent heavy metal pollutants in soil, and pose a major threat to crop production, food security and human health. Here, MeRIP-seq approach was employed to analyze the regulatory network activated in soybean nodules under Pb and Cd stress, ultimately leading to the identification of 19 shared differentially expressed DMGs. When overexpressed, GmATM1;1 was found to enhance the Pb and Cd tolerance of soybean nodules. These results provide a theoretical basis for studies on tolerance to heavy metals in symbiotic nitrogen fixation, and provide an approach to enhancing Pb and Cd tolerance in soybean production.


Subject(s)
Environmental Pollutants , Metals, Heavy , Soil Pollutants , Humans , Cadmium/metabolism , Transcriptome , Glycine max , Lead , Metals, Heavy/metabolism , Methylation , Soil , Soil Pollutants/metabolism
18.
J Hazard Mater ; 465: 133324, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38150760

ABSTRACT

In low and medium income countries (LMIC) drinking water sources (wells and boreholes) often contain a high number of pathogenic microorganisms, that can pose significant human and environmental health risks. In this study, a quantitative microbial risk assessment approach based on existing literature was conducted to evaluate and compare the quantitative health risks associated with different age groups using various drinking water supply systems. Results showed that both community-supply and self-supply modes exhibit similar levels of risk. However, the self-supply water source consistently showed higher risks compared to the community-supply one. Borehole water was found to be a more suitable option than well water, consistently showing between 5 and 8 lower health risks for E. coli and fecal coliform levels, respectively. The sensitivity analysis further showed the importance of prioritizing the reduction of E. coli concentration in well water and fecal coliform concentration in borehole water. This study offers a fresh perception on quantifying the impact of exposure concentration and age groups, shedding light on how they affect environmental health risks. These findings provide valuable insights for stakeholders involved in the management and protection of water sources.


Subject(s)
Drinking Water , Humans , Escherichia coli , Water Supply , Risk Assessment , Water Microbiology
19.
BMC Cancer ; 23(1): 1106, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957566

ABSTRACT

BACKGROUND: Researches have manifested that the disorder of iron metabolism is participated in Gastric cancer (GC), but whether iron metabolism-relevant genes (IMRGs) is related to the survival outcome of GC remain unknown. METHODS: Eleven tumor as well as nine adjacent normal tissues from GC patients were underwent mRNA sequencing, and the The Cancer Genome Atlas Stomach Cancer (TCGA-STAD) datasets were acquired from the TCGA database. Cox analyses and least absolute shrinkage and selection operator (LASSO) regression were applied to build a IMRGs signature. The relationship between signature genes and the infiltration profiling of 24 immune cells were investigated using single-sample GSEA (ssGSEA). Meanwhile, the potential biological significance, genes that act synergistically with signature genes, and the upstream regulatory targets were predicted. Finally, the abundance of the signature genes were measured via the quantitative real-time PCR (qRT-PCR). RESULTS: A IMRGs signature was constructed according to the expression and corresponding coefficient of DOHH, P4HA3 and MMP1 (The Schoenfeld individual test showed risk score was not significant with P values = 0.83). The prognostic outcome of patients in the high-risk group was terrible (p < 0.05). Receiver operating characteristic (ROC) curves confirmed that the IMRGs signature presented good efficiency for predicting GC prognosis (AUC > 0.6). The nomogram was performed well for clinical utilize (C-index = 0.60), and the MMP1 expression significantly increased in the cohorts at age > 60 and Stage II-IV (p < 0.05). The positive correlation of P4HA3 and MMP1 expression as well as the negative correlation of DOHH expression with risk score (p < 0.0001) and worse prognosis (p < 0.05) were detected as well. Furthermore, 11 differential immune cells were associated with these signature genes (most p < 0.01). Finally, qRT-PCR revealed that the abundance of DOHH, P4HA3 and MMP1 were high in tumor cases, indicating the complex mechanism between the high expression of DOHH as a protective factor and the high expression of P4HA3 and MMP1 as the risk factors in the development of GC. CONCLUSION: An iron metabolism-related signature was constructed and has significant values for foretelling the OS of GC.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Matrix Metalloproteinase 1 , Prognosis , Sequence Analysis, RNA , Iron , Procollagen-Proline Dioxygenase
20.
Parasit Vectors ; 16(1): 285, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587524

ABSTRACT

BACKGROUND: Clonorchiasis remains a non-negligible global zoonosis, causing serious socioeconomic burdens in endemic areas. Clonorchis sinensis infection typically elicits Th1/Th2 mixed immune responses during the course of biliary injury and periductal fibrosis. However, the molecular mechanism by which C. sinensis juvenile initially infects the host remains poorly understood. METHODS: The BALB/c mouse model was established to study early infection (within 7 days) with C. sinensis juveniles. Liver pathology staining and observation as well as determination of biochemical enzymes, blood routine and cytokines in blood were conducted. Furthermore, analysis of liver transcriptome, proteome and metabolome changes was performed using multi-omics techniques. Statistical analyses were performed using Student's t-test. RESULTS: Histopathological analysis revealed that liver injury, characterized by collagen deposition and inflammatory cell infiltration, occurred as early as 24 h of infection. Blood indicators including ALT, AST, WBC, CRP and IL-6 indicated that both liver injury and systemic inflammation worsened as the infection progressed. Proteomic data showed that apoptosis and junction-related pathways were enriched within 3 days of infection, indicating the occurrence of liver injury. Furthermore, proteomic and transcriptomic analysis jointly verified that the detoxification and antioxidant defense system was activated by enrichment of glutathione metabolism and cytochrome P450-related pathways in response to acute liver injury. Proteomic-based GO analysis demonstrated that biological processes such as cell deformation, proliferation, migration and wound healing occurred in the liver during the early infection. Correspondingly, transcriptomic results showed significant enrichment of cell cycle pathway on day 3 and 7. In addition, the KEGG analysis of multi-omics data demonstrated that numerous pathways related to immunity, inflammation, tumorigenesis and metabolism were enriched in the liver. Besides, metabolomic screening identified several metabolites that could promote inflammation and hepatobiliary periductal fibrosis, such as CA7S. CONCLUSIONS: This study revealed that acute inflammatory injury was rapidly triggered by initial infection by C. sinensis juveniles in the host, accompanied by the enrichment of detoxification, inflammation, fibrosis, tumor and metabolism-related pathways in the liver, which provides a new perspective for the early intervention and therapy of clonorchiasis.


Subject(s)
Clonorchiasis , Clonorchis sinensis , Animals , Mice , Clonorchis sinensis/genetics , Proteomics , Liver , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL
...