Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 9(1): 18876, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31827218

ABSTRACT

Electric force is presently the only means in laboratory to accelerate charged particles to high energies, corresponding acceleration processes are classical and continuous. Here we report on how to accelerate electrons and positrons to high energies using ultra intense lasers (UIL) through two quantum processes, nonlinear Compton scattering and nonlinear Breit-Wheeler process. In the coherent photon dominated regime of these two processes, the former can effectively boost electrons/positrons and the latter can produce high energy electrons and positrons with low energy γ photons. The energy needed for such quantum acceleration (QA) is transferred from large numbers of coherent laser photons through the two quantum processes. QA also collimate the generated high energy electrons and positrons along the laser axis and the effective acceleration distance is of microscopic dimensions. Proof of principle QA experiment can be performed on 100 petawatt (PW) scale lasers which are in building or planning.

2.
Sci Rep ; 8(1): 16862, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30442988

ABSTRACT

Electron radiation and γ photon annihilation are two of the major processes in ultra intense lasers (UIL). Understanding their behavior in one coherence interval (CI) is the basis for UIL-matter interaction researches. However, most existing analytic formulae only give the average over many CIs. Present understanding of these two multi-photon processes in one CI usually assume that they emit forward and their spectra have a cutoff at the energy of the electron/γ. Such assumptions ignore the effects of involved laser photons (EILP). We deduced the formulae for these two processes in one CI with EILP included and give the conditions for the EILP to be significant. Strong EILP introduces new behaviors into these two processes in one CI, such as large angle emission and emit particles above the usually assumed cutoff. Simulations show that the EILP would be significant when laser intensity reaches 2 × 1022 W/cm2, which is within the reach of state-of-art lasers.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(1): 172-7, 2015 Jan.
Article in Chinese | MEDLINE | ID: mdl-25993843

ABSTRACT

Simulating of the direct absorption TDLAS spectrum can help to comprehend the process of the absorbing and understand the influence on the absorption signal with each physical parameter. Firstly, the basic theory and algorithm of direct absorption TDLAS is studied and analyzed thoroughly, through giving the expressions and calculating steps of parameters based on Lambert-Beer's law, such as line intensity, absorption cross sections, concentration, line shape and gas total partition functions. The process of direct absorption TDLAS is simulated using MATLAB programs based on HITRAN spectra database, with which the absorptions under a certain temperature, pressure, concentration and other conditions were calculated, Water vapor is selected as the target gas, the absorptions of which under every line shapes were simulated. The results were compared with that of the commercial simulation software, Hitran-PC, which showed that, the deviation under Lorentz line shape is less than 0. 5%, and that under Gauss line shape is less than 2. 5%, while under Voigt line shape it is less than 1%. It verified that the algorithm and results of this work are correct and accurate. The absorption of H2O in v2 + v3 band under different pressure and temperature is also simulated. In low pressure range, the Doppler broadening dominant, so the line width changes little with varied.pressure, while the line peak increases with rising pressure. In high pressure range, the collision broadening dominant, so the line width changes wider with increasing pressure, while the line peak approaches to a constant value with rising pressure. And finally, the temperature correction curve in atmosphere detection is also given. The results of this work offer the reference and instruction for the application of TDLAS direct absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...