Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 20(5)2018 May 17.
Article in English | MEDLINE | ID: mdl-33265465

ABSTRACT

Large-eddy simulations of turbulent channel flow subjected to a step-like acceleration have been performed to investigate the effect of high Reynolds number ratios on the transient behaviour of turbulence. It is shown that the response of the flow exhibits the same fundamental characteristics described in He & Seddighi (J. Fluid Mech., vol. 715, 2013, pp. 60-102 and vol. 764, 2015, pp. 395-427)-a three-stage response resembling that of the bypass transition of boundary layer flows. The features of transition are seen to become more striking as the Re-ratio increases-the elongated streaks become stronger and longer, and the initial turbulent spot sites at the onset of transition become increasingly sparse. The critical Reynolds number of transition and the transition period Reynolds number for those cases are shown to deviate from the trends of He & Seddighi (2015). The high Re-ratio cases show double peaks in the transient response of streamwise fluctuation profiles shortly after the onset of transition. Conditionally-averaged turbulent statistics based on a λ_2-criterion are used to show that the two peaks in the fluctuation profiles are due to separate contributions of the active and inactive regions of turbulence generation. The peak closer to the wall is attributed to the generation of "new" turbulence in the active region, whereas the peak farther away from the wall is attributed to the elongated streaks in the inactive region. In the low Re-ratio cases, the peaks of these two regions are close to each other during the entire transient, resulting in a single peak in the domain-averaged profile.

2.
PLoS One ; 8(9): e73002, 2013.
Article in English | MEDLINE | ID: mdl-24069169

ABSTRACT

This paper employs the volume of fluid (VOF) method to numerically investigate the effect of the width, height, and contact angles on burst frequencies of super hydrophilic and hydrophilic capillary valves in centrifugal microfluidic systems. Existing experimental results in the literature have been used to validate the implementation of the numerical method. The performance of capillary valves in the rectangular and the circular microfluidic structures on super hydrophilic centrifugal microfluidic platforms is studied. The numerical results are also compared with the existing theoretical models and the differences are discussed. Our experimental and computed results show a minimum burst frequency occurring at square capillaries and this result is useful for designing and developing more sophisticated networks of capillary valves. It also predicts that in super hydrophilic microfluidics, the fluid leaks consistently from the capillary valve at low pressures which can disrupt the biomedical procedures in centrifugal microfluidic platforms.


Subject(s)
Microfluidics/methods , Microfluidic Analytical Techniques/methods , Models, Theoretical
3.
J Neurosci ; 28(43): 10893-904, 2008 Oct 22.
Article in English | MEDLINE | ID: mdl-18945897

ABSTRACT

Disrupted-in-Schizophrenia-1 (DISC1), identified by positional cloning of a balanced translocation (1;11) with the breakpoint in intron 8 of a large Scottish pedigree, is associated with a range of neuropsychiatric disorders including schizophrenia. To model this mutation in mice, we have generated Disc1(tr) transgenic mice expressing 2 copies of truncated Disc1 encoding the first 8 exons using a bacterial artificial chromosome (BAC). With this partial simulation of the human situation, we have discovered a range of phenotypes including a series of novel features not previously reported. Disc1(tr) transgenic mice display enlarged lateral ventricles, reduced cerebral cortex, partial agenesis of the corpus callosum, and thinning of layers II/III with reduced neural proliferation at midneurogenesis. Parvalbumin GABAergic neurons are reduced in the hippocampus and medial prefrontal cortex, and displaced in the dorsolateral frontal cortex. In culture, transgenic neurons grow fewer and shorter neurites. Behaviorally, transgenic mice exhibit increased immobility and reduced vocalization in depression-related tests, and impairment in conditioning of latent inhibition. These abnormalities in Disc1(tr) transgenic mice are consistent with findings in severe schizophrenia.


Subject(s)
Behavior, Animal/physiology , Mutation , Nerve Tissue Proteins/genetics , Neurons/pathology , Phenotype , Schizophrenia/genetics , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Bromodeoxyuridine/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Disease Models, Animal , Embryo, Mammalian , Gene Expression Regulation/genetics , Green Fluorescent Proteins/biosynthesis , Hindlimb Suspension/methods , Inhibition, Psychological , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurites/drug effects , Neurites/pathology , Neurons/drug effects , Parvalbumins/metabolism , Schizophrenia/pathology , Schizophrenia/physiopathology , Swimming
SELECTION OF CITATIONS
SEARCH DETAIL
...