Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 271: 106925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718521

ABSTRACT

Excessive antibiotic use has led to the spread of antibiotic resistance genes (ARGs), impacting gut microbiota and host health. However, the effects of antibiotics on amphibian populations remain unclear. We investigated the impact of oxytetracycline (OTC) and ciprofloxacin (CIP) on Chinese giant salamanders (Andrias davidianus), focusing on gut microbiota, ARGs, and gene expression by performing metagenome and transcriptome sequencing. A. davidianus were given OTC (20 or 40 mg/kg) or CIP (50 or 100 mg/kg) orally for 7 days. The results revealed that oral administration of OTC and CIP led to distinct changes in microbial composition and functional potential, with CIP treatment having a greater impact than OTC. Antibiotic treatment also influenced the abundance of ARGs, with an increase in fluoroquinolone and multi-drug resistance genes observed post-treatment. The construction of metagenome-assembled genomes (MAGs) accurately validated that CIP intervention enriched fish-associated potential pathogens Aeromonas hydrophila carrying an increased number of ARGs. Additionally, mobile genetic elements (MGEs), such as phages and plasmids, were implicated in the dissemination of ARGs. Transcriptomic analysis of the gut revealed significant alterations in gene expression, particularly in immune-related pathways, with differential effects observed between OTC and CIP treatments. Integration of metagenomic and transcriptomic data highlighted potential correlations between gut gene expression and microbial composition, suggesting complex interactions between the host gut and its gut microbiota in response to antibiotic exposure. These findings underscore the importance of understanding the impact of antibiotic intervention on the gut microbiome and host health in amphibians, particularly in the context of antibiotic resistance and immune function.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Gastrointestinal Microbiome , Oxytetracycline , Urodela , Animals , Oxytetracycline/toxicity , Gastrointestinal Microbiome/drug effects , Ciprofloxacin/pharmacology , Ciprofloxacin/toxicity , Urodela/genetics , Urodela/microbiology , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Transcriptome/drug effects , Metagenome , Metagenomics , Gene Expression Profiling , Water Pollutants, Chemical/toxicity , Aeromonas hydrophila/drug effects , Gene Expression Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...