Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 11: 642, 2020.
Article in English | MEDLINE | ID: mdl-32655408

ABSTRACT

Exertional heat stroke (EHS) is a life-threatening disease characterized by high mortality and incidence of rhabdomyolysis (RM). It would therefore be valuable to establish a stable EHS-induced RM model that accurately reflects the clinical characteristics of EHS patients and provides an objective animal model for further study of the pathogenesis of RM. In the current study, 8∼9-week-old, male, wild-type C57BL/6J mice, at the stage of sexual maturity, were randomly divided into four groups: the EHS group, the classical heat stroke (CHS) group, the sham heat exercise group, and sham heat rest group. The survival rate of mice was determined under relatively high levels of temperature and humidity (37.5°C, 65% relative humidity (RH); 37.5°C, 70% RH; 39.5°C, 65% RH; and 39.5°C, 70% RH) as well as a high core temperature (Tc; 42, 42.5, and 43°C). Results showed that the environmental condition of 39.5°C and 65% RH was most suitable for EHS modeling. The end point of EHS evaluation was exhaustion or an individual's core temperature reaching 43°C. The survival rate of mice in the EHS group within 24 h under these conditions was 37.34%, which is consistent with the high mortality characteristics noted in EHS patients. Severe RM was observed in the EHS group by H&E staining and transmission electron microscopy. Creatine kinase levels in the EHS group mostly exceeded 10,000 U/L, which was approximately 10 times higher than that in the sham heat rest group. Renal tubules of the EHS group exhibited severe necrosis, and calcium overload in the skeletal muscles of this group was also observed using intravital 2-photon microscopy. In conclusion, we made improvements to a stable EHS-induced RM animal model to truly reflect the clinical characteristics of EHS patients. This new model should be helpful in the further study of RM pathogenesis.

2.
Shock ; 52(5): 532-539, 2019 11.
Article in English | MEDLINE | ID: mdl-30475328

ABSTRACT

INTRODUCTION: Dexmedetomidine (DEX) has been demonstrated to inhibit inflammatory response and protect against multiorgan injury in various scenarios. The objectives of the present study were to ascertain whether DEX is able to attenuate acute lung injury (ALI) under heatstroke (HS), and to explore the underlying mechanism. METHODS: Male C57BL/6 mice were exposed to ambient temperature of 39.5 ±â€Š0.2°C until core temperature reach 43°C. DEX or 0.9% saline was injected i.p. immediately. At the end of the experiment, bronchoalveolar lavage fluid (BALF) and lung tissue were harvested. RESULTS: HS induce ALI and pulmonary dysfunction, while DEX treatment could significantly inhibit lung injury and improve respiratory dysfunction under HS. The overall effect was beneficial and improved the 72 h cumulative survival rate of mice with HS. Furthermore, HS significantly elevated the levels of cytokines in BALF, as well as increased the activity of toll-like receptor 4 (TLR4)/MyD88/nuclear factor-κB (NFκB) signaling pathway in lung tissue, while DEX treatment could inhibit such effects. Finally, DEX could upregulate the expression of caveolin 1 downregulated by HS, which may contribute to the inhibition of TLR4/MyD88/NFκB signaling pathway. DISCUSSION: In conclusion, the present results indicated that DEX may protect against lung inflammatory response and injury under HS via TLR4/MyD88/NFκB signaling pathway, and caveolin-1 may participate in the effects.


Subject(s)
Acute Lung Injury , Dexmedetomidine/pharmacology , Heat Stress Disorders , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Animals , Heat Stress Disorders/complications , Heat Stress Disorders/drug therapy , Heat Stress Disorders/metabolism , Heat Stress Disorders/pathology , Male , Mice , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...