Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 20(1): 187, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730463

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), a type of coronavirus, is one of the main pathogens that can infect pigs of all ages. It causes diarrhea and acute death of newborn piglets, resulting in massive economic losses to the worldwide swine industry. While vaccination remains the primary approach in combating PEDV, it often fails to address all the challenges posed by the infection, particularly in light of the emergence of evolving mutant strains. Therefore, there is a critical need to identify potent antiviral drugs that can effectively safeguard pigs against PEDV infection. RESULTS: In this study, the antiviral efficacy of SP2509, a specific antagonist of Lysine-specific demethylase 1(LSD1), was evaluated in vitro. The RT-qPCR, Western blot, TCID50, and IFA showed that at a concentration of 1µmol/L, SP2509 significantly inhibited PEDV infection. Additionally, viral life cycle assays showed that SP2509 operates by impeding PEDV internalization and replication rather than attachment and release. Regarding mechanism, in Huh-7 cells, knockdowns LSD1 can suppress PEDV replication. This indicated that the inhibition effect of SP2509 on PEDV largely depends on the activity of its target protein, LSD1. CONCLUSION: Our results in vitro show that SP2509 can inhibit PEDV infection during the internalization and replication stage and revealed a role of LSD1 as a restriction factor for PEDV. These imply that LSD1 might be a target for interfering with the viral infection, and SP2509 could be developed as an effective anti-PEDV agent.


Subject(s)
Antiviral Agents , Histone Demethylases , Porcine epidemic diarrhea virus , Virus Replication , Porcine epidemic diarrhea virus/drug effects , Animals , Antiviral Agents/pharmacology , Virus Replication/drug effects , Histone Demethylases/antagonists & inhibitors , Swine , Chlorocebus aethiops , Swine Diseases/virology , Swine Diseases/drug therapy , Coronavirus Infections/veterinary , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Vero Cells
2.
Vet Res ; 53(1): 22, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303942

ABSTRACT

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are cytosolic pattern recognition receptors that initiate innate antiviral immunity. Recent reports found that duck RLRs significantly restrict duck plague virus (DPV) infection. However, the molecular mechanism by which DPV evades immune responses is unknown. In this study, we first found that the DPV UL41 protein inhibited duck interferon-ß (IFN-ß) production mediated by RIG-I and melanoma differentiation-associated gene 5 (MDA5) by broadly downregulating the mRNA levels of important adaptor molecules, such as RIG-I, MDA5, mitochondrial antiviral signalling protein (MAVS), stimulator of interferon gene (STING), TANK-binding kinase 1 (TBK1), and interferon regulatory factor (IRF) 7. The conserved sites of the UL41 protein, E229, D231, and D232, were responsible for this activity. Furthermore, the DPV CHv-BAC-ΔUL41 mutant virus induced more duck IFN-ß and IFN-stimulated genes (Mx, OASL) production in duck embryo fibroblasts (DEFs) than DPV CHv-BAC parent virus. Our findings provide insights into the molecular mechanism underlying DPV immune evasion.


Subject(s)
Ducks , Interferon-beta , Animals , Immunity, Innate , Interferon-beta/genetics , Interferons , RNA Stability
3.
Poult Sci ; 100(5): 101085, 2021 May.
Article in English | MEDLINE | ID: mdl-33799115

ABSTRACT

Duck Tembusu virus (DTMUV) and duck plague virus (DPV) are typical DNA and RNA viruses of waterfowl, causing drastic economic losses to the duck farm industry in terms of high mortality and decreased egg production. These 2 viruses reappear from time to time because the available vaccines fail to provide complete immunity and no clinical antiviral drugs are available for them. In the present study, we evaluated the antiviral activity of SC75741 for DTMUV, DPV, and the model virus, vesicular stomatitis virus infection in duck cells. SC75741, a nuclear factor-kappa B (NF-κB)-specific inhibitor in mammal cells, revealed the highest antiviral activity among the inhibitors specific to c-Jun NH2-terminal kinase, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase (p38), and NF-κB signaling. The antiviral activity of SC75741 was dose-dependent and showed effects in different duck cell types. Time-addition and duration assay demonstrated that SC75741 inhibited virus infection in the middle of and after virus infection at least for 72 h in duck embro fibroblast cells. The DPV viral adsorption and genomic copy number were reduced, indicating that SC75741 blocks the phase of the virus life cycle at viral entry and genomic replication. In addition, SC75741 enhanced the expression of interferon only when stimulator of interferon genes (STING) was overexpressed or pre-activated by the virus infection, suggesting that SC75741 acts as a STING agonist. In conclusion, SC75741 is a candidate antiviral agent for DTMUV and DPV.


Subject(s)
Poultry Diseases , Vesicular Stomatitis , Animals , Chickens , Ducks , Flavivirus , Immunity, Innate
4.
Vet Microbiol ; 255: 108979, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33721633

ABSTRACT

The virion host shutoff (VHS) protein, encoded by the UL41 gene of herpes simplex virus (HSV), specifically degrades mRNA and induces host shutoff. VHS and its homologs are highly conserved in the Alphaherpesvirinae subfamily. However, the role of the duck plague virus (DPV) UL41 gene is unclear. In this study, we found that the DPV UL41 gene-encoded protein (pUL41) degrades RNA polymerase (pol) II-transcribed translatable RNA and induces protein synthesis shutoff. DPV pUL41 was dispensable for viral replication, but the UL41-deleted mutant virus exhibited a significant viral growth defect and plaque size reduction in Duck embryo fibroblast (DEF) cells. Furthermore, DPV pUL41 regulated viral mRNA accumulation to affect viral DNA replication, release and cell-to-cell spread.


Subject(s)
Alphaherpesvirinae/metabolism , Ribonucleases/metabolism , Viral Proteins/metabolism , Virus Replication/physiology , Alphaherpesvirinae/genetics , Animals , Bird Diseases/virology , Cells, Cultured , Ducks/embryology , Fibroblasts/physiology , Fibroblasts/virology , Gene Deletion , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Viral , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Ribonucleases/genetics , Viral Proteins/genetics , Virus Release , Virus Replication/genetics
5.
Vet Res ; 51(1): 135, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33176874

ABSTRACT

Duck enteritis virus (DEV) is a member of the Alphaherpesvirinae subfamily. The characteristics of some DEV genes have been reported. However, information regarding the DEV UL47 gene is limited. In this study, we identified the DEV UL47 gene encoding a late structural protein located in the nucleus of infected cells. We further found that two domains of DEV pUL47, amino acids (aa) 40 to 50 and 768 to 777, could function as nuclear localization sequence (NLS) to guide the nuclear localization of pUL47 and nuclear translocation of heterologous proteins, including enhanced green fluorescent protein (EGFP) and beta-galactosidase (ß-Gal). Moreover, pUL47 significantly inhibited polyriboinosinic:polyribocytidylic acid [poly(I:C)]-induced interferon beta (IFN-ß) production and downregulated interferon-stimulated gene (ISG) expression, such as Mx and oligoadenylate synthetase-like (OASL), by interacting with signal transducer and activator of transcription-1 (STAT1).


Subject(s)
Ducks , Interferon-beta/physiology , Mardivirus/physiology , Marek Disease/virology , Poultry Diseases/virology , STAT1 Transcription Factor/physiology , Viral Structural Proteins/genetics , Animals , Cell Nucleus/virology , Signal Transduction
6.
Virol J ; 17(1): 68, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32430029

ABSTRACT

BACKGROUND: Host shutoff refers to the widespread downregulation of host gene expression and has emerged as a key process that facilitates the reallocation of cellular resources for viral replication and evasion of host antiviral immune responses. MAIN BODY: The Herpesviridae family uses a number of proteins that are responsible for host shutoff by directly targeting messenger RNA (mRNA), including virion host shutoff (VHS) protein and the immediate-early regulatory protein ICP27 of herpes simplex virus types 1 (HSV-1) and the SOX (shutoff and exonuclease) protein and its homologs in Gammaherpesvirinae subfamilies, although these proteins are not homologous. In this review, we highlight evidence that host shutoff is promoted by the VHS, ICP27 and SOX-like proteins and that they also contribute to immune evasion. CONCLUSIONS: Further studies regarding the host shutoff proteins will not only contribute to provide new insights into the viral replication, expression and host immune evasion process, but also provide new molecular targets for the development of antiviral drugs and therapies.


Subject(s)
Host Microbial Interactions/immunology , Immediate-Early Proteins/genetics , Immune Evasion , Ribonucleases/genetics , Viral Proteins/genetics , Animals , Cell Line , Chlorocebus aethiops , Gene Expression , Herpesvirus 1, Human , Host Microbial Interactions/genetics , Immediate-Early Proteins/metabolism , Ribonucleases/metabolism , Vero Cells , Viral Proteins/metabolism , Virion/genetics , Virus Replication
7.
Sci Rep ; 9(1): 4851, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890748

ABSTRACT

Thus far, there have been no reports on the molecular characterization and antiapoptotic function of the DPV Us5 gene. To perform molecular characterization of DPV Us5, RT-PCR and pharmacological inhibition tests were used to ascertain the kinetic class of the Us5 gene. Western blotting and an indirect immunofluorescence assay (IFA) were used to analyze the expression level and subcellular localization of Us5 in infected cells at different time points. Us5 in purified DPV virions was identified by mass spectrometry. The results of RT-PCR, Western blotting, and pharmacological inhibition tests revealed that Us5 is transcribed mainly in the late stage of viral replication. The IFA results revealed that Us5 was localized throughout DPV-infected cells but was localized only to the cytoplasm of transfected cells. Mass spectrometry and Western blot analysis showed that Us5 was a virion component. Next, to study the antiapoptotic function of DPV Us5, we found that DPV CHv without gJ could induce more apoptosis cells than DPV-CHv BAC and rescue virus. we constructed a model of apoptosis in duck embryo fibroblasts (DEFs) induced by hydrogen peroxide (H2O2). Transfected cells expressing the Us5 gene were protected from apoptosis induced by H2O2, as measured by a TUNEL assay, a caspase activation assay and Flow Cytometry assay. The TUNEL assay and Flow Cytometry assay results showed that the recombinant plasmid pCAGGS-Us5 could inhibit apoptosis induced by H2O2 in DEF cells. However, caspase-3/7 and caspase-9 protein activity upregulated by H2O2 was significantly reduced in cells expressing the recombinant plasmid pCAGGS-Us5. Overall, these results show that the DPV Us5 gene is a late gene and that the Us5 protein is a component of the virion, is localized in the cytoplasm, and can inhibit apoptosis induced by H2O2 in DEF cells.


Subject(s)
Apoptosis/genetics , Ducks/virology , Genes, Viral/genetics , Animals , Apoptosis/drug effects , Caspases/genetics , Cell Line , Fibroblasts/drug effects , Fibroblasts/virology , Hydrogen Peroxide/pharmacology , Viral Envelope Proteins/genetics , Virion/drug effects , Virion/genetics , Virus Replication/drug effects , Virus Replication/genetics
8.
Front Immunol ; 10: 3131, 2019.
Article in English | MEDLINE | ID: mdl-32063900

ABSTRACT

Duck plague virus (DPV) is a representative pathogen transmitted among aquatic animals that causes gross lesions and immune inhibition in geese and ducks. The mechanism of organ tropism and innate immune evasion of DPV has not been completely deciphered due to a lack of cell models to study the innate immune manipulation and pathogenicity of aquatic viruses. In the present study, we isolated five types of duck primary cells [duck embryo fibroblasts (DEFs), neurons, astrocytes, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages] to identify appropriate cell models for DPV, using tropism infection and innate immunologic assays. Cells responded differently to stimulation with DNA viruses or RNA virus analogs. DPV infection exhibited broad tropism, as the recombinant virulent strain (CHv-GFP) infected DEFs, neurons, astrocytes, and monocytes/macrophages, but not the PBMCs, as the expression of EGFP was negligible. The basal levels of innate immunity molecules were highest in monocytes/macrophages and lower in DEFs and astrocytes. Conversely, the titer and genomic copy number of the attenuated virus strain was higher in DEFs and astrocytes than in neurons and monocytes/macrophages. The titer and genomic copy number of the attenuated virus strain were higher compared with the virulent strain in DEFs, neurons, and astrocytes. The innate immune response was not significantly induced by either DPV strain in DEFs, neurons, or astrocytes. The virulent strain persistently infected monocytes/macrophages, but the attenuated strain did so abortively, and this was accompanied by the phenomenon of innate immune inhibition and activation by the virulent and attenuated strains, respectively. Blockage of IFNAR signaling promoted replication of the attenuated strain. Pre-activation of IFNAR signaling inhibited infection by the virulent strain. The selection assay results indicated that induction of innate immunity plays an essential role in controlling DPV infection, and monocytes/macrophages are an important cell model for further investigations. Our study provided practical methods for isolating and culturing duck primary cells, and our results will facilitate further investigations of organ tropism, innate immune responses, latent infection, and the effectiveness of antiviral drugs for treating DPV and potentially other aerial bird pathogens.


Subject(s)
Disease Models, Animal , Ducks/immunology , Ducks/virology , Marek Disease/immunology , Marek Disease/virology , Animals , Astrocytes/immunology , Astrocytes/virology , Cell Culture Techniques/methods , Cells, Cultured , Immunity, Innate/immunology , Macrophages/immunology , Macrophages/virology , Mardivirus/immunology , Monocytes/immunology , Monocytes/virology , Neurons/immunology , Neurons/virology
9.
Virol J ; 15(1): 12, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29334975

ABSTRACT

BACKGROUND: Duck enteritis virus (DEV) belongs to the subfamily Alphaherpesvirinae, and information on the DEV UL41 gene is limited. METHODS: The DEV UL41 gene was cloned into the pET32a(+) vector and expressed in a prokaryotic expression system. Antiserum was raised against a bacterially expressed UL41-His fusion protein for further experiments. Transcription was quantified and UL41 protein expression levels were determined in DEV-infected cells at different time points by RT-qPCR and western blotting, respectively. DEV virions were purified by sucrose gradient centrifugation and analyzed by mass spectrometry to identify protein content. We confirmed the DEV UL41 gene kinetic class using a pharmacological test. IFA was used to analyze the intracellular localization of pUL41. RESULTS: The recombinant expression plasmid, pET-32a(+)-UL41, which highly expresses a 76.0 kDa fusion protein, was constructed and expressed in E. coli BL21 (DE3) after induction with 0.2 mM IPTG at 30 °C for 10 h, generating a specific mouse anti-UL41 protein polyclonal antibody. RT-qPCR and western blot analyses revealed that the UL41 transcript number peaked at 36 hpi, and peak protein expression occurred at 48 hpi. The pharmacological test showed that UL41 was a γ2 gene. Mass spectrometry analysis showed that pUL41 was a virion component. IFA results revealed that pUL41 was localized throughout DEV-infected cells but only localized to the cytoplasm of transfected cells. DEV pUL47 translocated pUL41 to the nuclei of DEF cells; this translocation was dependent on predicted pUL47 NLS signals (40-50 aa and 768-777 aa). CONCLUSIONS: DEV UL41 is a γ2 gene that encodes a virion structural protein, pUL41 localizes throughout DEV-infected cells but only localizes to the cytoplasm of transfected cells. pUL41 cannot autonomously localize to the nucleus, as this nuclear localization is dependent on predicted DEV pUL47 NLS signals (40-50 aa and 768-777 aa).


Subject(s)
Alphaherpesvirinae/genetics , Alphaherpesvirinae/metabolism , Ducks/virology , Herpesviridae Infections/veterinary , Poultry Diseases/virology , Viral Proteins/genetics , Viral Proteins/metabolism , Animals , Cell Line , Gene Expression Regulation, Viral , Genetic Vectors/genetics , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...