Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 295(52): 18379-18389, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33122192

ABSTRACT

The dimeric ectonucleotidase CD73 catalyzes the hydrolysis of AMP at the cell surface to form adenosine, a potent suppressor of the immune response. Blocking CD73 activity in the tumor microenvironment can have a beneficial effect on tumor eradication and is a promising approach for cancer therapy. Biparatopic antibodies binding different regions of CD73 may be a means to antagonize its enzymatic activity. A panel of biparatopic antibodies representing the pairwise combination of 11 parental monoclonal antibodies against CD73 was generated by Fab-arm exchange. Nine variants vastly exceeded the potency of their parental antibodies with ≥90% inhibition of activity and subnanomolar EC50 values. Pairing the Fabs of parents with nonoverlapping epitopes was both sufficient and necessary whereas monovalent antibodies were poor inhibitors. Some parental antibodies yielded potent biparatopics with multiple partners, one of which (TB19) producing the most potent. The structure of the TB19 Fab with CD73 reveals that it blocks alignment of the N- and C-terminal CD73 domains necessary for catalysis. A separate structure of CD73 with a Fab (TB38) which complements TB19 in a particularly potent biparatopic shows its binding to a nonoverlapping site on the CD73 N-terminal domain. Structural modeling demonstrates a TB19/TB38 biparatopic antibody would be unable to bind the CD73 dimer in a bivalent manner, implicating crosslinking of separate CD73 dimers in its mechanism of action. This ability of a biparatopic antibody to both crosslink CD73 dimers and fix them in an inactive conformation thus represents a highly effective mechanism for the inhibition of CD73 activity.


Subject(s)
5'-Nucleotidase/chemistry , 5'-Nucleotidase/immunology , Antibodies, Monoclonal/immunology , Epitopes/immunology , Immunoglobulin Fab Fragments/immunology , Lung Neoplasms/immunology , 5'-Nucleotidase/metabolism , Catalytic Domain , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/immunology , GPI-Linked Proteins/metabolism , Humans , Protein Conformation , Tumor Cells, Cultured
2.
Cell Chem Biol ; 25(6): 705-717.e11, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29628435

ABSTRACT

Activating KRAS mutations are major oncogenic drivers in multiple tumor types. Synthetic lethal screens have previously been used to identify targets critical for the survival of KRAS mutant cells, but their application to drug discovery has proven challenging, possibly due in part to a failure of monolayer cultures to model tumor biology. Here, we report the results of a high-throughput synthetic lethal screen for small molecules that selectively inhibit the growth of KRAS mutant cell lines in soft agar. Chemoproteomic profiling identifies the target of the most KRAS-selective chemical series as dihydroorotate dehydrogenase (DHODH). DHODH inhibition is shown to perturb multiple metabolic pathways. In vivo preclinical studies demonstrate strong antitumor activity upon DHODH inhibition in a pancreatic tumor xenograft model.


Subject(s)
Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pancreatic Neoplasms/drug therapy , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrimidines/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Dihydroorotate Dehydrogenase , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Humans , Mice , Mice, SCID , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Pyrimidines/chemistry , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tumor Cells, Cultured
3.
SLAS Discov ; 23(3): 264-273, 2018 03.
Article in English | MEDLINE | ID: mdl-29336194

ABSTRACT

CD73/Ecto-5'-nucleotidase is a membrane-tethered ecto-enzyme that works in tandem with CD39 to convert extracellular adenosine triphosphate (ATP) into adenosine. CD73 is highly expressed on various types of cancer cells and on infiltrating suppressive immune cells, leading to an elevated concentration of adenosine in the tumor microenvironment, which elicits a strong immunosuppressive effect. In preclinical studies, targeting CD73 with anti-CD73 antibody results in favorable antitumor effects. Despite initial studies using antibodies, inhibition of CD73 catalytic activity using small-molecule inhibitors may be more effective in lowering extracellular adenosine due to better tumor penetration and distribution. To screen small-molecule libraries, we explored multiple approaches, including colorimetric and fluorescent biochemical assays, and due to some limitations with these assays, we developed a mass spectrometry (MS)-based assay. Only the MS-based assay offers the sensitivity and dynamic range required for screening small-molecule libraries at a substrate concentration close to the Km value of substrate and for evaluating the mode of binding of screening hits. To achieve a throughput suitable for high-throughput screening (HTS), we developed a RapidFire-tandem mass spectrometry (RF-MS/MS)-based multiplex assay. This assay allowed a large diverse compound library to be screened at a speed of 1536 reactions per 40-50 min.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Animals , Biological Assay/methods , Cell Line , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , Mice , Tandem Mass Spectrometry/methods
4.
PLoS One ; 12(9): e0185092, 2017.
Article in English | MEDLINE | ID: mdl-28950000

ABSTRACT

Tumor cells display fundamental changes in metabolism and nutrient uptake in order to utilize additional nutrient sources to meet their enhanced bioenergetic requirements. Glutamine (Gln) is one such nutrient that is rapidly taken up by tumor cells to fulfill this increased metabolic demand. A vital step in the catabolism of glutamine is its conversion to glutamate by the mitochondrial enzyme glutaminase (GLS). This study has identified GLS a potential therapeutic target in breast cancer, specifically in the basal subtype that exhibits a deregulated glutaminolysis pathway. Using inducible shRNA mediated gene knockdown, we discovered that loss of GLS function in triple-negative breast cancer (TNBC) cell lines with a deregulated glutaminolysis pathway led to profound tumor growth inhibition in vitro and in vivo. GLS knockdown had no effect on growth and metabolite levels in non-TNBC cell lines. We rescued the anti-tumor effect of GLS knockdown using shRNA resistant cDNAs encoding both GLS isoforms and by addition of an α-ketoglutarate (αKG) analog thus confirming the critical role of GLS in TNBC. Pharmacological inhibition of GLS with the small molecule inhibitor CB-839 reduced cell growth and led to a decrease in mammalian target of rapamycin (mTOR) activity and an increase in the stress response pathway driven by activating transcription factor 4 (ATF4). Finally, we found that GLS inhibition synergizes with mTOR inhibition, which introduces the possibility of a novel therapeutic strategy for TNBC. Our study revealed that GLS is essential for the survival of TNBC with a deregulated glutaminolysis pathway. The synergistic activity of GLS and mTOR inhibitors in TNBC cell lines suggests therapeutic potential of this combination for the treatment of vulnerable subpopulations of TNBC.


Subject(s)
Glutaminase/metabolism , Glutamine/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/enzymology , Cell Line, Tumor , Female , Humans , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
5.
Cancer Cell ; 28(6): 773-784, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26678339

ABSTRACT

Heterozygous mutation of IDH1 in cancers modifies IDH1 enzymatic activity, reprogramming metabolite flux and markedly elevating 2-hydroxyglutarate (2-HG). Here, we found that 2-HG depletion did not inhibit growth of several IDH1 mutant solid cancer types. To identify other metabolic therapeutic targets, we systematically profiled metabolites in endogenous IDH1 mutant cancer cells after mutant IDH1 inhibition and discovered a profound vulnerability to depletion of the coenzyme NAD+. Mutant IDH1 lowered NAD+ levels by downregulating the NAD+ salvage pathway enzyme nicotinate phosphoribosyltransferase (Naprt1), sensitizing to NAD+ depletion via concomitant nicotinamide phosphoribosyltransferase (NAMPT) inhibition. NAD+ depletion activated the intracellular energy sensor AMPK, triggered autophagy, and resulted in cytotoxicity. Thus, we identify NAD+ depletion as a metabolic susceptibility of IDH1 mutant cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Brain Neoplasms/drug therapy , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Glioblastoma/drug therapy , Isocitrate Dehydrogenase/genetics , Mutation , NAD/deficiency , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Animals , Autophagy/drug effects , Brain Neoplasms/enzymology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Cytokines/metabolism , Energy Metabolism/drug effects , Enzyme Activation , Female , Glioblastoma/enzymology , Glioblastoma/genetics , Glioblastoma/pathology , Glutarates/metabolism , HEK293 Cells , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/metabolism , Metabolomics/methods , Mice, SCID , Molecular Targeted Therapy , Nicotinamide Phosphoribosyltransferase/metabolism , Pentosyltransferases/metabolism , Signal Transduction/drug effects , Spheroids, Cellular , Time Factors , Transfection , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
J Med Chem ; 58(23): 9345-53, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26561979

ABSTRACT

DGAT2 plays a critical role in hepatic triglyceride production, and data suggests that inhibition of DGAT2 could prove to be beneficial in treating a number of disease states. This article documents the discovery and optimization of a selective small molecule inhibitor of DGAT2 as well as pharmacological proof of biology in a mouse model of triglyceride production.


Subject(s)
Diacylglycerol O-Acyltransferase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Isoquinolines/chemistry , Isoquinolines/pharmacology , Triglycerides/metabolism , Animals , Diacylglycerol O-Acyltransferase/metabolism , Drug Discovery , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacokinetics , Humans , Isoquinolines/administration & dosage , Isoquinolines/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Triglycerides/blood
7.
Sci Rep ; 5: 7642, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25560837

ABSTRACT

Monoacylglycerol lipase (MAGL) represents a primary degradation enzyme of the endogenous cannabinoid (eCB), 2-arachidonoyglycerol (2-AG). This study reports a potent covalent MAGL inhibitor, SAR127303. The compound behaves as a selective and competitive inhibitor of mouse and human MAGL, which potently elevates hippocampal levels of 2-AG in mice. In vivo, SAR127303 produces antinociceptive effects in assays of inflammatory and visceral pain. In addition, the drug alters learning performance in several assays related to episodic, working and spatial memory. Moreover, long term potentiation (LTP) of CA1 synaptic transmission and acetylcholine release in the hippocampus, two hallmarks of memory function, are both decreased by SAR127303. Although inactive in acute seizure tests, repeated administration of SAR127303 delays the acquisition and decreases kindled seizures in mice, indicating that the drug slows down epileptogenesis, a finding deserving further investigation to evaluate the potential of MAGL inhibitors as antiepileptics. However, the observation that 2-AG hydrolysis blockade alters learning and memory performance, suggests that such drugs may have limited value as therapeutic agents.


Subject(s)
Analgesics/pharmacology , Arachidonic Acids/metabolism , Carbamates/pharmacology , Endocannabinoids/metabolism , Glycerides/metabolism , Learning/drug effects , Memory, Short-Term/drug effects , Monoacylglycerol Lipases/metabolism , Sulfonamides/pharmacology , Acetylcholine/metabolism , Administration, Oral , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Arachidonic Acids/chemistry , Binding Sites , Brain/metabolism , Cannabinoid Receptor Antagonists/pharmacology , Carbamates/chemistry , Carbamates/therapeutic use , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Disease Models, Animal , Electric Stimulation , Endocannabinoids/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Glycerides/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Hydrolysis , In Vitro Techniques , Long-Term Potentiation/drug effects , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, SCID , Monoacylglycerol Lipases/antagonists & inhibitors , Pain/drug therapy , Pain/pathology , Piperidines/pharmacology , Protein Structure, Tertiary , Pyrazoles/pharmacology , Rimonabant , Seizures/drug therapy , Seizures/pathology , Sulfonamides/chemistry , Sulfonamides/therapeutic use
8.
J Biol Chem ; 290(2): 762-74, 2015 Jan 09.
Article in English | MEDLINE | ID: mdl-25391653

ABSTRACT

Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg(2+). A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme.


Subject(s)
Drug Discovery , Enzyme Inhibitors/chemistry , Isocitrate Dehydrogenase/chemistry , Neoplasms/drug therapy , Allosteric Site , Crystallography, X-Ray , DNA Methylation/genetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Escherichia coli , Gene Expression Regulation, Neoplastic , Humans , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/biosynthesis , Isocitrate Dehydrogenase/genetics , Magnesium/chemistry , Mutant Proteins/chemistry , Mutant Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Protein Conformation
9.
Metabolism ; 61(4): 470-81, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22001333

ABSTRACT

The objective was to assess whether pharmacological activation of lecithin cholesterol acyltransferase (LCAT) could exert beneficial effects on lipoprotein metabolism. A putative small molecule activator (compound A) was used as a tool compound in in vitro and in vivo studies. Compound A increased LCAT activity in vitro in plasma from mouse, hamster, rhesus monkey, and human. To assess the acute pharmacodynamic effects of compound A, C57Bl/6 mice and hamsters received a single dose (20 mg/kg) of compound A. Both species displayed a significant increase in high-density lipoprotein cholesterol (HDLc) and a significant decrease in non-HDLc and triglycerides acutely after dosing; these changes tracked with ex vivo plasma LCAT activity. To examine compound A's chronic effect on lipoprotein metabolism, hamsters received a daily dosing of vehicle or of 20 or 60 mg/kg of compound A for 2 weeks. At study termination, compound treatment resulted in a significant increase in HDLc, HDL particle size, plasma apolipoprotein A-I level, and plasma cholesteryl ester (CE) to free cholesterol ratio, and a significant reduction in very low-density lipoprotein cholesterol. The increase in plasma CE mirrored the increase in HDL CE. Triglycerides trended toward a dose-dependent decrease in very low-density lipoprotein and HDL, with multiple triglyceride species reaching statistical significance. Gallbladder bile acids content displayed a significant and more than 2-fold increase with the 60 mg/kg treatment. We characterized pharmacological activation of LCAT by a small molecule extensively for the first time, and our findings support the potential of this approach in treating dyslipidemia and atherosclerosis; our analyses also provide mechanistic insight on LCAT's role in lipoprotein metabolism.


Subject(s)
Enzyme Activation/physiology , Lipoproteins/metabolism , Liver/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Thiadiazoles/pharmacology , Animals , Bile Acids and Salts/blood , Cholesterol/blood , Cholesterol Esters/blood , Cricetinae , Enzyme Activation/drug effects , Female , Lipoproteins, HDL/blood , Liver/enzymology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mesocricetus , Mice , Mice, Inbred C57BL , Thiadiazoles/chemistry , Triglycerides/blood
10.
J Lipid Res ; 52(6): 1150-1161, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21415123

ABSTRACT

The use of stable isotopically labeled substrates and analysis by mass spectrometry have provided substantial insight into rates of synthesis, disposition, and utilization of lipids in vivo. The information to be gained from such studies is of particular benefit to therapeutic research where the underlying causes of disease may be related to the production and utilization of lipids. When studying biology through the use of isotope tracers, care must be exercised in interpreting the data to ensure that any response observed can truly be interpreted as biological and not as an artifact of the experimental design or a dilutional effect on the isotope. We studied the effects of dosing route and tracer concentration on the mass isotopomer distribution profile as well as the action of selective inhibitors of microsomal tri-glyceride transfer protein (MTP) in mice and diacylglycerol acyltransferase 1 (DGAT1) in nonhuman primates, using a stable-isotopically labeled approach. Subjects were treated with inhibitor and subsequently given a dose of uniformly ¹³C-labeled oleic acid. Samples were analyzed using a rapid LC-MS technique, allowing the effects of the intervention on the assembly and disposition of triglycerides, cholesteryl esters, and phospholipids to be determined in a single 3 min run from just 10 µl of plasma.


Subject(s)
Carrier Proteins/metabolism , Cholesterol Esters/blood , Diacylglycerol O-Acyltransferase/metabolism , Lipid Metabolism , Lipoproteins/blood , Oleic Acid , Triglycerides/blood , Animals , Carrier Proteins/antagonists & inhibitors , Chlorocebus aethiops , Chromatography, Liquid , Drug Administration Routes , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/pharmacology , Female , Isotope Labeling/methods , Isotopes/analysis , Isotopes/blood , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Oleic Acid/metabolism , Oleic Acid/pharmacology
11.
J Pharm Sci ; 99(7): 3246-65, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20166204

ABSTRACT

We systematically validated a robust 96-well Caco-2 assay via an extended set of 93 marketed drugs with diverse transport mechanisms and quantified by LC/MS/MS, to investigate its predictive utility while dealing with challenging discovery compounds. Utilizing nonlinear fit, the validation led to a good correlation (R(2) = 0.76) between absorptive permeability, log P(app)(A-B), from in vitro Caco-2 assay and reported human fraction of dose absorbed. We observed that paracellular compounds could be flagged by log P(app)(A-B) (<-5.5 cm/s) and physicochemical property space (c log P < 1). Of 8000 Novartis discovery compounds examined 13% were subject to low recovery (<30%). Compound loss was investigated by comparing cell monolayer and artificial membrane, while 0.5% bovine serum albumin (in both donor and acceptor compartments) was utilized to improve recovery. The second focus of this study was to investigate the advantages and limitations of the current Caco-2 assay for predicting in vivo intestinal absorption. Caco-2 measurements for compounds with high aqueous solubility and low in vitro metabolic clearance were compared to 88 in vivo rat bioavailability studies. Despite the challenges posed by discovery compounds with suboptimal physicochemical properties, Caco-2 data successfully projected low intestinal absorption. This platform sets the stage for mechanistically evaluating compounds towards improving in vitro-in vivo correlations.


Subject(s)
Intestinal Absorption , Pharmacokinetics , Caco-2 Cells , Cell Membrane Permeability , Humans , Models, Biological
12.
Gastroenterology ; 136(1): 227-235.e3, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18992744

ABSTRACT

BACKGROUND AND AIMS: Epidemiologic studies have linked nutritional folate deficiency to an increased risk of cancer, but recent trials suggest that folate supplementation does not protect against tumor formation. Our aim was to analyze the genetic and epigenetic consequences of folate deficiency and to investigate whether impairment of the uracil base excision repair pathway can enhance its effects. METHODS: Wild-type mice and those deficient in uracil DNA glycosylase (Ung(-/-)) were placed on a folate-deficient diet for 8 months. We measured tumor incidence in major organs, DNA mutation rates, DNA mutation spectra, local DNA methylation, and global DNA methylation in colon epithelial cells. RESULTS: The experimental diet increased plasma homocysteine (60%, P< .001) and DNA uracil content (24%, P< .05) but not tumor formation. Global DNA methylation was slightly decreased in splenocytes (9.1%) and small intestinal epithelial cells (4.2%), and significantly reduced in colon epithelial cells (7.2%, P< .04). No gene-specific changes in methylation were detected at the mouse B1 element, the H19 DMR, or the Oct4 gene. By lambda CII assay and sequencing analysis of 730 mutants, we found that Ung(-/-) mice had a higher frequency of point mutations and increased C:G to T:A transitions at non-CpG sites. However, folate deficiency had no additional effect on the DNA mutation frequency or spectrum in Ung(-/-) or wild-type mice. CONCLUSIONS: Contradicting current concepts, these findings indicate that the effects of a low-folate diet on DNA methylation and point mutations are insufficient to promote tumor development, even in the presence of Ung deficiency.


Subject(s)
DNA Methylation , DNA/metabolism , Folic Acid Deficiency/genetics , Point Mutation , Uracil/metabolism , Animals , CpG Islands , Homocysteine/blood , Lymphoma, Follicular/etiology , Mice , Mice, Inbred C57BL , Uracil-DNA Glycosidase/physiology
13.
J Biomol Screen ; 13(5): 343-53, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18474896

ABSTRACT

The potential for metabolism-related drug-drug interactions by new chemical entities is assessed by monitoring the impact of these compounds on cytochrome P450 (CYP) activity using well-characterized CYP substrates. The conventional gold standard approach for in vitro evaluation of CYP inhibitory potential uses pooled human liver microsomes (HLM) in conjunction with prototypical drug substrates, often quantified by LC-MS/MS. However, fluorescent CYP inhibition assays, which use recombinantly expressed CYPs and fluorogenic probe substrates, have been employed in early drug discovery to provide low-cost, high-throughput assessment of new chemical entities. Despite its greatly enhanced throughput, this approach has been met with mixed success in predicting the data obtained with the conventional gold standard approach (HLM+LC-MS). The authors find that the predictivity of fluorogenic assays for the major CYP isoforms 3A4 and 2D6 may depend on the quality of the test compounds. Although the structurally more optimized marketed drugs yielded acceptable correlations between the fluorogenic and HLM+LC-MS/MS assays for CYPs 3A4, 2D6, and 2C9 (r2 = 0.5-0.7; p < 0.005), preoptimization, early discovery compounds yielded poorer correlations (r2 < or = 0.2) for 2 of these major isoforms, CYPs 3A4 and 2D6. Potential reasons for the observed differences are discussed.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors , Drug Design , Enzyme Inhibitors/chemistry , Spectrometry, Fluorescence/methods , Tandem Mass Spectrometry/methods , Enzyme Inhibitors/pharmacology
14.
Genes Dev ; 21(23): 3110-22, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-18056424

ABSTRACT

Increased methylation of CpG islands and silencing of affected target genes is frequently found in human cancer; however, in vivo the question of causality has only been addressed by loss-of-function studies. To directly evaluate the role and mechanism of de novo methylation in tumor development, we overexpressed the de novo DNA methyltransferases Dnmt3a1 and Dnmt3b1 in Apc Min/+ mice. We found that Dnmt3b1 enhanced the number of colon tumors in Apc Min/+ mice approximately twofold and increased the average size of colonic microadenomas, whereas Dnmt3a1 had no effect. The overexpression of Dnmt3b1 caused loss of imprinting and increased expression of Igf2 as well as methylation and transcriptional silencing of the tumor suppressor genes Sfrp2, Sfrp4, and Sfrp5. Importantly, we found that Dnmt3b1 but not Dnmt3a1 efficiently methylates the same set of genes in tumors and in nontumor tissues, demonstrating that de novo methyltransferases can initiate methylation and silencing of specific genes in phenotypically normal cells. This suggests that DNA methylation patterns in cancer are the result of specific targeting of at least some tumor suppressor genes rather than of random, stochastic methylation followed by clonal selection due to a proliferative advantage caused by tumor suppressor gene silencing.


Subject(s)
Colonic Neoplasms/etiology , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Gene Silencing , Adenoma/etiology , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Animals , Carcinogens/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , DNA Methyltransferase 3A , Down-Regulation , Genes, APC , Genomic Imprinting , Humans , Insulin-Like Growth Factor II/genetics , Loss of Heterozygosity , Mice , Mice, Inbred C57BL , Mice, Transgenic , DNA Methyltransferase 3B
15.
Nat Genet ; 39(3): 391-6, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17322882

ABSTRACT

Studies have shown that DNA (cytosine-5-)-methyltransferase 1 (DNMT1) is the principal enzyme responsible for maintaining CpG methylation and is required for embryonic development and survival of somatic cells in mice. The role of DNMT1 in human cancer cells, however, remains highly controversial. Using homologous recombination, here we have generated a DNMT1 conditional allele in the human colorectal carcinoma cell line HCT116 in which several exons encoding the catalytic domain are flanked by loxP sites. Cre recombinase-mediated disruption of this allele results in hemimethylation of approximately 20% of CpG-CpG dyads in the genome, coupled with activation of the G2/M checkpoint, leading to arrest in the G2 phase of the cell cycle. Although cells gradually escape from this arrest, they show severe mitotic defects and undergo cell death either during mitosis or after arresting in a tetraploid G1 state. Our results thus show that DNMT1 is required for faithfully maintaining DNA methylation patterns in human cancer cells and is essential for their proliferation and survival.


Subject(s)
Colorectal Neoplasms/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Mitosis , Alleles , Cell Proliferation , Cell Survival , Colorectal Neoplasms/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/physiology , DNA Methylation , HCT116 Cells , Humans , Models, Biological , Models, Genetic
16.
Chemosphere ; 49(3): 315-22, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12363311

ABSTRACT

Two species of marine clam, Mya arenaria and Protothaca staminea, were exposed to pyrene and 1-hydroxypyrene in small glass aquaria. After 10 days of exposure the clams were sacrificed, and both clam tissue and seawater were assayed for pyrene metabolites by using HPLC, fluorescence spectroscopy, HPLC-ESI-MS, GC-MS and 1H-NMR spectrometry. 1-Pyrenol-1-hydrogensulfate (pyrene-1-sulfate) was identified as the major water soluble metabolite formed from both pyrene and 1-hydroxypyrene by both species of clam. 1-Hydroxypyrene was identified as a minor metabolite of pyrene, and pyrenediol-hydrogen sulfate was identified as a minor metabolite of 1-hydroxypyrene.


Subject(s)
Bivalvia/metabolism , Pyrenes/metabolism , Animals , Biodegradation, Environmental , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Pyrenes/analysis , Pyrenes/chemistry , Spectrometry, Fluorescence , Spectrometry, Mass, Electrospray Ionization , Sulfuric Acid Esters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...