Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834972

ABSTRACT

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Subject(s)
Antioxidants , Glycolysis , Liver , Methionine , Animals , Liver/metabolism , Liver/drug effects , Glycolysis/drug effects , Antioxidants/metabolism , Sheep , Methionine/pharmacology , Methionine/administration & dosage , Methionine/metabolism , Lysine/metabolism , Diet, Protein-Restricted/veterinary , Dietary Supplements , Animal Feed/analysis , Male
2.
Animals (Basel) ; 14(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891581

ABSTRACT

In ruminants, supplementing appropriate amounts of amino acids improves growth, feed utilization efficiency, and productivity. This study aimed to assess the effects of different Lys/Met ratios on the ruminal microbial community and the metabolic profiling in Tibetan sheep using 16S rDNA sequencing and non-target metabolomics. Ninety-two-month-old Tibetan rams (initial weight = 15.37 ± 0.92 kg) were divided into three groups and fed lysine/methionine (Lys/Met) of 1:1 (LP-L), 2:1 (LP-M), and 3:1 (LP-H) in low-protein diet, respectively. Results: The T-AOC, GSH-Px, and SOD were significantly higher in the LP-L group than in LP-H and LP-M groups (p < 0.05). Cellulase activity was significantly higher in the LP-L group than in the LP-H group (p < 0.05). In the fermentation parameters, acetic acid concentration was significantly higher in the LP-L group than in the LP-H group (p < 0.05). Microbial sequencing analysis showed that Ace and Chao1 indicators were significantly higher in LP-L than in LP-H and LP-M (p < 0.05). At the genus level, the abundance of Rikenellaceae RC9 gut group flora and Succiniclasticum were significantly higher in LP-L than in LP-M group (p < 0.05). Non-target metabolomics analyses revealed that the levels of phosphoric acid, pyrocatechol, hydrocinnamic acid, banzamide, l-gulono-1,4-lactone, cis-jasmone, Val-Asp-Arg, and tropinone content were higher in LP-L. However, l-citrulline and purine levels were lower in the LP-L group than in the LP-M and LP-H groups. Banzamide, cis-jasmone, and Val-Asp-Arg contents were positively correlated with the phenotypic contents, including T-AOC, SOD, and cellulase. Phosphoric acid content was positively correlated with cellulase and lipase activities. In conclusion, the Met/Lys ratio of 1:1 in low-protein diets showed superior antioxidant status and cellulase activity in the rumen by modulating the microbiota and metabolism of Tibetan sheep.

3.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 1016-1027, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38432684

ABSTRACT

Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression. However, the regulatory mechanisms of lipid metabolism in yaks involved in circRNAs remain poorly understood. The IMF plays a crucial role in the quality of yak meat, to greatly improve the meat quality. In this study, the fatty acid profiles of yak IMF were determined and circRNAs were sequenced. The results showed that the total of polyunsaturated fatty acid (PUFA) content of adult yak muscle was significantly higher than that in yak calves (p < 0.05). A total of 29,021 circRNAs were identified in IMF tissue, notably, 99 differentially expressed (DE) circRNAs were identified, to be associated with fat deposition, the most significant of which were circ_12686, circ_6918, circ_3582, ci_106 and ci_123 (A circRNA composed of exons is labelled 'circRNA' and a circRNA composed of introns is labelled 'ciRNA'). KEGG pathway enrichment analysis showed that the differential circRNAs were enriched in four pathways associated with fat deposition (e.g., the peroxisome proliferator-activated receptor signalling, fatty acid degradation, sphingolipid metabolism and sphingolipid signalling pathways). We also constructed co-expression networks of DE circRNA-miRNA using high-throughput sequencing in IMF deposition, from which revealed that ci_106 target binding of bta-miR-130b, bta-miR-148a, bta-miR-15a, bta-miR-34a, bta-miR-130a, bta-miR-17-5p and ci_123 target binding of bta-miR-150 were involved in adipogenesis. The study revealed the role of the circRNAs in the IMF deposition in yak and its influence on meat quality the findings demonstrated the circRNA differences in the development of IMF with the increase of age, thus providing a theoretical basis for further research on the molecular mechanism of IMF deposition in yaks.


Subject(s)
Gene Expression Regulation , Muscle, Skeletal , RNA, Circular , Animals , RNA, Circular/genetics , RNA, Circular/metabolism , Cattle/genetics , Muscle, Skeletal/metabolism , Gene Expression Regulation/physiology , Adipose Tissue/metabolism , Male
4.
Sci Bull (Beijing) ; 68(21): 2639-2657, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37734982

ABSTRACT

Two-dimensional (2D) magnetism and nontrivial band topology are both areas of research that are currently receiving significant attention in the study of 2D materials. Recently, a novel class of materials has emerged, known as 2D magnetic topological materials, which elegantly combine 2D magnetism and nontrivial topology. This field has garnered increasing interest, especially due to the emergence of several novel magnetic topological states that have been generalized into the 2D scale. These states include antiferromagnetic topological insulators/semimetals, second-order topological insulators, and topological half-metals. Despite the rapid advancements in this emerging research field in recent years, there have been few comprehensive summaries of the state-of-the-art progress. Therefore, this review aims to provide a thorough analysis of current progress on 2D magnetic topological materials. We cover various 2D magnetic topological insulators, a range of 2D magnetic topological semimetals, and the novel 2D topological half-metals, systematically analyzing the basic topological theory, the course of development, the material realization, and potential applications. Finally, we discuss the challenges and prospects for 2D magnetic topological materials, highlighting the potential for future breakthroughs in this exciting field.

5.
Biosensors (Basel) ; 13(9)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37754122

ABSTRACT

Due to the advantages of its numerous modification sites, predictable structure, high thermal stability, and excellent biocompatibility, DNA is the ideal choice as a key component of biosensors. DNA biosensors offer significant advantages over existing bioanalytical techniques, addressing limitations in sensitivity, selectivity, and limit of detection. Consequently, they have attracted significant attention from researchers worldwide. Here, we exemplify four foundational categories of functional nucleic acids: aptamers, DNAzymes, i-motifs, and G-quadruplexes, from the perspective of the structure-driven functionality in constructing DNA biosensors. Furthermore, we provide a concise overview of the design and detection mechanisms employed in these DNA biosensors. Noteworthy advantages of DNA as a sensor component, including its programmable structure, reaction predictility, exceptional specificity, excellent sensitivity, and thermal stability, are highlighted. These characteristics contribute to the efficacy and reliability of DNA biosensors. Despite their great potential, challenges remain for the successful application of DNA biosensors, spanning storage and detection conditions, as well as associated costs. To overcome these limitations, we propose potential strategies that can be implemented to solve these issues. By offering these insights, we aim to inspire subsequent researchers in related fields.

6.
J Phys Condens Matter ; 36(1)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37748480

ABSTRACT

In two-dimensional (2D) scale, controllable topological phase transition between a conventional topological quantum state and a higher-order one has been a challenge currently. Herein, based on first-principles, we report 2D metal-organic frameworks (MOFs) are ideal choice for realizing such topological phase transition. Taking MOF candidate Pd3(C6S6)2as an example, a semimetallic band structure is present at the equilibrium state. Under moderate compressive strain, it features a nontrivial energy gap and corner states, which is evidenced as a second-order topological insulator (SOTI). In addition, the band order for its low-energy bands switches at moderate tensile strain, during which topological phase transition from SOTI and topological semimetal to double Weyl semimetal (DWSM) happens, accompanied by the change in real Chern number formνR=1toνR=0. At the critical point for the phase transition, the system can be characterized as a 2D pseudospin-1 fermion. Beside Pd3(C6S6)2, we further identify the ferromagnetic monolayer Fe3(C6S6)2can also take the DWSM-to-SOTI phase transition, where the topological fermions and corresponding edge/corner states could be fully spin-polarized. This work has for the first time realized topological transition between conventional topological quantum state and a higher-order one in both nonmagnetic and magnetic MOFs.

7.
Nano Lett ; 23(16): 7358-7363, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37535707

ABSTRACT

Real Chern insulators have attracted great interest, but so far, their material realization is limited to nonmagnetic crystals and systems without spin-orbit coupling. Here, we reveal the magnetic real Chern insulator (MRCI) state in a recently synthesized metal-organic framework material Co3(HITP)2. Its ground state with in-plane ferromagnetic ordering hosts a nontrivial real Chern number, enabled by the C2zT symmetry and robustness against spin-orbit coupling. Distinct from previous nonmagnetic examples, the topological corner zero modes of MRCIs are spin-polarized. Furthermore, under small tensile strains, the material undergoes a topological phase transition from the MRCI to a magnetic double-Weyl semimetal phase, via a pseudospin-1 critical state. Similar physics can also be found in closely related materials Mn3(HITP)2 and Fe3(HITP)2, which also exist. Possible experimental detections and implications of an emerging magnetic flat band in the system are discussed.

8.
J Phys Condens Matter ; 35(26)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36990099

ABSTRACT

Two-dimensional (2D) half-metal and topological states have been the current research focus in condensed matter physics. Herein, we report a novel 2D material named EuOBr monolayer, which can simultaneously show 2D half-metal and topological fermions. This material shows a metallic state in the spin-up channel but a large insulating gap of 4.38 eV in the spin-down channel. In the conducting spin channel, the EuOBr monolayer shows the coexistence of Weyl points and nodal-lines near the Fermi level. These nodal-lines are classified by type-I, hybrid, closed, and open nodal-lines. The symmetry analysis suggests these nodal-lines are protected by the mirror symmetry, which cannot be broken even spin-orbit coupling is included because the ground magnetization direction in the material is out-of-plane [001]. The topological fermions in the EuOBr monolayer are fully spin-polarized, which can be meaningful for future applications in topological spintronic nano-devices.

9.
Phys Chem Chem Phys ; 24(41): 25403-25410, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36250242

ABSTRACT

Topological semimetals with nontrivial band crossing points have attracted widespread interest in recent years. Here, we propose that AB2 (A = Cr, Mo; B = Si, Ge) compounds are topological semimetals that feature a pair of triple points (TPs) on high-symmetry paths in the absence of spin-orbital coupling (SOC). In particular, the existence of this kind of TP is accompanied by a quadratic nodal line (QNL). In addition, we discover that these TPs are movable. Under a triaxial strain, we can change their positions on high-symmetry paths. When considering SOC, TPs transform into two pairs of type-II Dirac points along the high-symmetry path. Akin to TPs without SOC, each pair of Dirac points can also shift their positions on the high-symmetry paths under a triaxial strain. To characterize this property of TPs and Dirac points, we construct an effective model around the TPs and Dirac points, finding that there indeed exists a parameter that could characterize the movable properties for the TPs and Dirac points. According to the bulk-surface correspondence, we also discover that the length of the Fermi arcs that correspond to the nontrivial band crossings are also altered when changing their positions. Meanwhile, the shapes of Fermi arcs are also changed. Therefore, our work provides a platform to study the band crossings that are movable. The controllable fermions are beneficial to utilize the topological materials in nano-devices.

10.
J Phys Condens Matter ; 34(15)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35062014

ABSTRACT

Topological phases in two-dimensional (2D) systems have been attracting tremendous attention since the discovery of graphene. Since the experimental probing could proceed in the whole phonon spectrum, intensive research effort has been devoted to the topological quantum phases in phononic systems. Via first-principles calculations, we predict that a family of 2D hexagonal materials, XH (X = Si, Ge, Sn), hosts ideal linear nodal points (LNPs) and quadratic phononic nodal points (QNPs). Specifically, the LNPs appear at the two inequivalent valleys, akin to the 2D Dirac point in graphene, connecting by an edge arc. The QNP is pinned at the Γ point, two edge states emerge from their projections. Remarkably, both LNPs and QNP enjoy an emergent chiral symmetry, we then show that they feature nontrivial topological charges. As a consequence, our work discusses the nodal points in the phonon spectrum of 2D materials and provides ideal candidates to study the topology for bosonic systems.

11.
Phys Chem Chem Phys ; 22(35): 20027-20036, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32870207

ABSTRACT

Novel spintronic materials combining both magnetism and nontrivial topological electronic structures have attracted increasing attention recently. Here, we systematically studied the doping effects, magnetism, half-metallicity, and topological properties in the family of Fe2-xVxPO5 (x = 0, 0.5, 1, 1.5, 2) compounds. Our results show that Fe2PO5 takes an antiferromagnetic (AFM) ordering with a zero total magnetic moment. Meanwhile, the material hosts a Dirac nodal line and a Weyl nodal line near the Fermi level. V2PO5 is a ferromagnetic (FM) nodal line half-metal with a 100% spin-polarized Weyl nodal line. After doping, we find that Fe1.5V0.5PO5, Fe1V1PO5 and Fe0.5V1.5PO5 all take ferrimagnetic (FiM) ordering, with the Fe and V atoms taking opposite spin directions. Both Fe1.5V0.5PO5 and Fe0.5V1.5PO5 are FiM half-metals. Meanwhile, they show several pairs of fully spin-polarized Weyl points near the Fermi level. Fe1V1PO5 is a FiM semiconductor with different sizes of band gaps in different spin channels. These Fe2-xVxPO5 materials not only provide a good research platform to study the novel properties combining magnetism and nontrivial band topology, but also have promising applications in spintronic applications.

12.
J Adv Res ; 24: 523-528, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32612858

ABSTRACT

In most Weyl semimetal (WSMs), the Weyl nodes with opposite chiralities usually have the same type of band dispersions (either type-I or type-II), whereas realistic candidate materials hosting different types of Weyl nodes have not been identified to date. Here we report for the first time that, a ternary compound HfCuP, is an excellent WSM with the coexistence of type-I and type-II Weyl nodes. Our results show that, HfCuP totally contains six pairs of type-I and six pairs of type-II Weyl nodes in the Brillouin zone, all locating at the H-K path. These Weyl nodes situate slightly below the Fermi level, and do not coexist with other extraneous bands. The nontrivial band structure in HfCuP produces clear Fermi arc surface states in the (1 0 0) surface projection. Moreover, we find the Weyl nodes in HfCuP can be effectively tuned by strain engineering. These characteristics make HfCuP a potential candidate material to investigate the novel properties of type-I and type-II Weyl fermions, as well as the potential entanglements between them.

13.
Phys Chem Chem Phys ; 22(10): 5847-5854, 2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32107508

ABSTRACT

Topological aspects of electronic structures have received intensive research interest in recent years. Here, we systematically investigate the electronic structure, doping effect and topological signature in a family of realistic compounds Li3-xNaxM (x = 3, 2, 1, 0; M = N, P, As, Sb, Bi). Without considering SOC, their electronic band structures show a doubly degenerate nodal line (NL) near the Fermi level in the Γ-A path. In addition, some compounds including Li2NaN, LiNa2N, Na3N and Na3Bi also exhibit one (or two) pair(s) of triply-degenerate nodal points (TDNPs) in the Γ-A path, locating at both sides of the Γ point. When SOC is taken into account, the band degeneracy of the NLs splits, and the scale of band splitting follows a positive correlation with the atomic weight of the M elements. Due to the band splitting by SOC, most of the Li3-xNaxM compounds show a pair of Dirac points (DPs) near the Fermi level. Very interestingly, we find that these DPs possess different types of band dispersions, namely type-I, type-II and the critical-type. The Fermi arcs from the DPs are identified. Our results indicate that Li3-xNaxM compounds are good candidates to study the novel properties of NLs, TDNPs, and DPs with different slopes of band dispersions.

SELECTION OF CITATIONS
SEARCH DETAIL
...