Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 673: 60-69, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38875798

ABSTRACT

Developing an efficient electrocatalyst that enables the efficient electrochemical conversion from CO2 to CH4 across a wide potential range remains a formidable challenge. Herein, we introduce a precatalyst strategy that realizes the in situ electrochemical reconstruction of ultrafine Cu2O nanodomains, intricately coupled on the CeO2 surface (Cu2O/CeO2), originating from the heterointerface comprised of ultrafine CuO nanodomains on the CeO2 surface (CuO/CeO2). When served as the electrocatalyst for the electrochemical CO2 reduction reaction, Cu2O/CeO2 delivers a selectivity higher than 49 % towards CH4 over a broad potential range from -1.2 V to -1.7 V vs. RHE, maintaining negligible activity decay for 20 h. Notably, the highest selectivity for CH4 reaches an impressive 70 % at -1.5 V vs. RHE. Through the combination of comprehensive analysis including synchrotron X-ray absorption spectroscopy, spherical aberration-corrected high-angle annular dark field scanning transmission electron microscope as well as the density functional theoretical calculation, the efficient production of CH4 is attributed to the coherent interface between Cu2O and CeO2, which could converted from the original CuO and CeO2 interface, ensuring abundant active sites and enhanced intrinsic activity and selectivity towards CH4.

2.
J Colloid Interface Sci ; 622: 662-674, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35533481

ABSTRACT

Recently, g-C3N4 (CN) loaded N-doped carbon dots (NCDs) have been widely studied as promising metal-free photocatalysts due to their impressive performance in hydrogen production. However, deep understanding of the effect of nitrogen chemical states on photocatalytic activity is still lacked. In this work, NCDs doped with pyrrole nitrogen, graphite/pyrrole nitrogen, and pyrrole/pyridine nitrogen were prepared and hybridized with g-C3N4. The characterizations revealed that, incorporation of pyrrole N-doped CDs into g-C3N4 (CN/NCDs-en) effectively enhanced the visible light absorption, facilitated electron-hole separation, and promoted the participation of photoexcited electrons in H2 evolution reaction. Moreover, theoretical calculation showed that, compared with graphite N and pyridine N, pyrrole N has the most appropriate H adsorption ability, which is conducive to the H2 formation. Under visible light irradiation, the CN/NCDs-en exhibited the best hydrogen evolution of 3028 µmol h-1 g-1. These results shed a light on the design and optimization of N-doped metal-free photocatalysts for H2 evolution reaction.

3.
Article in English | MEDLINE | ID: mdl-35639877

ABSTRACT

The activation of the C-H bond, a necessary step to get high-value-added compounds, is one of the most important issues in modern catalysis. Combining the advantages of both homogeneous and heterogeneous catalysis, a certain continuous homogeneous process should be one of the ideal routes for the catalytic activation of C-H bonds. Here, through machine learning (ML), we predicted and fabricated metal-free carbon dot (C-Dot) homogeneous catalysts for C-H bond oxidation. These C-Dots have an ascorbic acid unit based polymer-like structure with a polymerization degree in the range of 3-10. With C-Dots as the catalyst, three groups (aliphatic, aromatic, and cycloalkanes) of 10 hydrocarbon molecules were tested, proving its generality for the catalytic oxidation of the C-H bond. A typical example of cyclohexane that was selectively oxidized to adipic acid (AA) by using a circulation and phase-transfer process demonstrates its critical advantages, such as the continuous and large-scaled producing ability of the homogeneous catalysis process. The one-pass conversion efficiency of cyclohexane to AA reaches 77.49% with selectivity up to 84.24% in 4 h. The yield of 16.32% per hour is about 4 times over that of modern technology. Theoretical calculations suggested that the O2 activation on C-Dots plays a crucial role in determining the reaction rate of the entire catalytic oxidation process of cyclohexane.

SELECTION OF CITATIONS
SEARCH DETAIL
...