Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 109(3-2): 035207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632725

ABSTRACT

The National Ignition Facility has recently achieved successful burning plasma and ignition using the inertial confinement fusion (ICF) approach. However, there are still many fundamental physics phenomena that are not well understood, including the kinetic processes in the hohlraum. Shan et al. [Phys. Rev. Lett. 120, 195001 (2018)0031-900710.1103/PhysRevLett.120.195001] utilized the energy spectra of neutrons to investigate the kinetic colliding plasma in a hohlraum of indirect drive ICF. However, due to the typical large spatial-temporal scales, this experiment could not be well simulated by using available codes at that time. Utilizing our advanced high-order implicit PIC code, LAPINS, we were able to successfully reproduce the experiment on a large scale of both spatial and temporal dimensions, in which the original computational scale was increased by approximately seven to eight orders of magnitude. Not only is the validity of the explanation of the experiment confirmed by our simulations, i.e., the abnormally large width of neutron spectra comes from beam-target nuclear fusions, but also a different physical insight into the source of energetic deuterium ions is provided. The acceleration of deuterium ions can be categorized into two components: one is propelled by a sheath electric field created by the charge separation at the onset, while the other is a result of the reflection of the potential of the shock wave. The robustness of the acceleration mechanism is analyzed with varying initial conditions, e.g., temperatures, drifting velocity, and ion components. This paper might serve as a reference for benchmark simulations of upcoming simulation codes and may be relevant for future research on mixtures and entropy increments at plasma interfaces.

2.
Sci Adv ; 10(14): eadk5229, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569034

ABSTRACT

The origin of the cosmic magnetic field remains an unsolved mystery, relying not only on specific dynamo processes but also on the seed field to be amplified. Recently, the diffuse radio emission and Faraday rotation observations reveal that there has been a microgauss-level magnetic field in intracluster medium in the early universe, which places strong constraints on the strength of the initial field and implies the underlying kinetic effects; the commonly believed Biermann battery can only provide extremely weak seed of 10-21 G. Here, we present evidence for the spontaneous Weibel-type magnetogenesis in laser-produced weakly collisional plasma with the three-dimensional synchronous proton radiography, where the distribution anisotropy directly arises from the temperature gradient, even without the commonly considered interpenetrating plasmas or shear flows. This field can achieve sufficient strength and is sensitive to Coulomb collision. Our results demonstrate the importance of kinetics in magnetogenesis in weakly collisional astrophysical scenarios.

3.
Phys Rev E ; 103(2-1): 023204, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33735965

ABSTRACT

It is shown theoretically and by simulation that a Gaussian laser beam of relativistic intensity interacting with a uniform-thickness plasma slab of azimuthally varying density can acquire orbital angular momentum (OAM). During the interaction, the laser ponderomotive force and the charge-separation force impose a torque on the plasma particles. The affected laser light and plasma ions gain oppositely directed axial OAM, but the plasma electrons remain almost OAM free. High OAM conversion efficiency is achieved due to the strong azimuthal electromagnetic energy flow during the laser phase modulation. The present scheme should provide useful reference for applications requiring relativistic-intense vortex light.

4.
Opt Lett ; 46(6): 1285-1288, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33720168

ABSTRACT

Isolated attosecond pulses are useful to perform pump-probe experiments at a high temporal resolution, and provide a new tool for ultrafast metrology. However, it is still a challenging task to generate such pulses of high intensity, even for a few-cycle laser. Through particle-in-cell simulations, we show that it is possible to directly generate a giant isolated attosecond pulse in the transmission direction from relativistic laser-driven plasmas. Compared to attosecond pulse generation in the reflection direction, no further spectral filtering is needed. The underlying radiation mechanism is coherent synchrotron emission, and the transmitted isolated attosecond pulse can reach relativistic intensity. This provides a promising alternative to generate intense isolated attosecond pulses for ultrafast studies.

5.
Phys Rev E ; 101(5-1): 053209, 2020 May.
Article in English | MEDLINE | ID: mdl-32575272

ABSTRACT

In this work, we studied the stopping power of deuterium-tritium (DT) plasmas mixed with impurities to the injected charged particles. Based on the Brown-Preston-Singleton model, the analytical expression for the change ratio of stopping power (denoted by η) induced by impurities in DT plasmas is developed, in which both classical short-distance collision part and quantum correction contribution are purely linear response to the impurity concentration ξ_{X}, while the classical long-range collision brings about higher-order nonlinear response to ξ_{X}. Furthermore, the expression for change ratio of deposition depth (denoted by χ) of charged particles induced by impurities in DT plasmas is also derived. As applications, we systemically investigated the energy loss of α particles deposited into a hot dense DT plasma mixed with impurity X(X=C, Si, Ge), where the temperature and density of DT are smaller than 10 keV and 500 g/cm^{3} and the concentration of Xξ_{X} is less than 5%. The numerical results suggest that (i) for the case of C mixed into DT, both change ratios of stopping power and deposition depth of α particles (i.e., η and χ) are linear response to the concentration of C ξ_{C}; (ii) for the case of Si mixed into DT, the second-order nonlinear response of η and χ to ξ_{Si} cannot be ignored when the densities of DT are larger than 200 g/cm^{3}; and (iii) for the case of Ge mixed into DT, the second- and third-order nonlinear response of η and χ to ξ_{Ge} are very remarkable because of the higher ionization degree and heavier atomic mass of Ge. The formulas and findings in this work may be helpful to the research of internal confinement fusion (ICF) related implosion physics and may provide useful theoretical guidance and data for the design of ICF target.

6.
Sci Rep ; 10(1): 3492, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32103045

ABSTRACT

The rescattering of backward stimulated Raman scattering (BSRS) by stimulated Brillouin scattering (SBS) is found in the high electron density region by relativistic Vlasov-Maxwell simulation and particle-in-cell (PIC) simulation, where the BSRS is in the regime of absolute instability and dominates in all the scatterings. Both one dimension (1D) Vlasov simulation and two dimension (2D) PIC simulation have been given to verify that there exists SBS of BSRS in the regime of absolute instability for BSRS. The SBS of BSRS will be even stronger than forward stimulated Raman scattering (FSRS) and SBS in regime of absolute instability for BSRS. Thus, besides Langmuir decay instability and laser energy absorption, the SBS of BSRS is also an important saturation mechanism of BSRS in high electron density region.

7.
Opt Express ; 26(10): 13012-13019, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801334

ABSTRACT

We investigate the high-order above-threshold ionization (HATI) of atoms (Ar and Xe) and molecules (N2 and O2) subjected to strong laser fields by numerically solving time-dependent Schrödinger equation. It is demonstrated that resonance-like enhancement of groups of adjacent peaks in photoelectron spectrum of HATI is observed for Ar, Xe, and N2, while this peculiar phenomenon is absent for O2, which is in agreement with experimental observation [ Phys. Rev. A88, 021401 (2013)]. In addition, analysis indicates that resonance-like enhancement in HATI spectra of atoms and molecules is closely related to excitation of the high-lying excited states.

8.
Phys Rev E ; 95(3-1): 031202, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28415291

ABSTRACT

Octahedral spherical hohlraums with a single laser ring at an injection angle of 55^{∘} are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55^{∘} are reported and compared to that observed with cylindrical hohlraums with injection angles of 28.5^{∘} and 55^{∘}, similar to that of the NIF. Significant LPI is observed with the laser injection of 28.5^{∘} in the cylindrical hohlraum where the propagation path is similar to the 55^{∘} injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35-µm incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

9.
Phys Rev Lett ; 117(2): 025002, 2016 Jul 08.
Article in English | MEDLINE | ID: mdl-27447512

ABSTRACT

The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M-band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

10.
Sci Rep ; 6: 27108, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27256904

ABSTRACT

In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

11.
Sci Rep ; 6: 20623, 2016 Feb 08.
Article in English | MEDLINE | ID: mdl-26853107

ABSTRACT

Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas.

12.
Opt Lett ; 41(1): 139-42, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26696178

ABSTRACT

In this Letter, we investigate the feasibility of focusing relativistic laser pulses toward diffraction limit by near-critical density plasma lenses. A theoretical model is developed to estimate the focal length of the plasma lens. Particle-in-cell simulations with various pulse parameters, such as pulse duration, beam waist, and intensity, are performed to show the robustness of plasma lenses. The results prove that the near-critical density plasma lenses can be deployed to obtain higher laser peak intensities with sub-wavelength focal spots in experiments.

13.
Sci Rep ; 5: 15499, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26503634

ABSTRACT

The mechanism for emergence of helical electron bunch(HEB) from an ultrarelativistic circularly polarized laser pulse propagating in near-critical density(NCD) plasma is investigated. Self-consistent three-dimensional(3D) Particle-in-Cell(PIC) simulations are performed to model all aspects of the laser plasma interaction including laser pulse evolution, electron and ion motions. At a laser intensity of 10(22) W/cm(2), the accelerated electrons have a broadband spectrum ranging from 300 MeV to 1.3 GeV, with the charge of 22 nano-Coulombs(nC) within a solid-angle of 0.14 Sr. Based on the simulation results, a phase-space dynamics model is developed to explain the helical density structure and the broadband energy spectrum.

14.
Article in English | MEDLINE | ID: mdl-24125370

ABSTRACT

Thermophysical properties of hydrogen, helium, and hydrogen-helium mixtures have been investigated in the warm dense matter regime at electron number densities ranging from 6.02 × 10^{29} ∼ 2.41 × 10^{30} m^{-3} and temperatures from 4000 to 20000 K via quantum molecular dynamics simulations. We focus on the dynamical properties such as the equation of states, diffusion coefficients, and viscosity. Mixing rules (density matching, pressure matching, and binary ionic mixing rules) have been validated by checking composite properties of pure species against that of the fully interacting mixture derived from quantum molecular dynamics simulations. These mixing rules reproduce pressures within 10% accuracy, while it is 75% and 50% for the diffusion and viscosity, respectively. The binary ionic mixing rule moves the results into better agreement. Predictions from one component plasma model are also provided and discussed.

15.
Article in English | MEDLINE | ID: mdl-23944567

ABSTRACT

Consistent descriptions of the equation of states and information about the transport coefficients of the deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm(3) and a temperature of 10(4) eV). Diffusion coefficients and viscosity are compared to the one-component plasma model in different regimes from the strong coupled to the kinetic one. Electronic and radiative transport coefficients, which are compared to models currently used in hydrodynamic simulations of inertial confinement fusion, are evaluated up to 800 eV. The Lorentz number is discussed from the highly degenerate to the intermediate region. One-dimensional hydrodynamic simulation results indicate that different temperature and density distributions are observed during the target implosion process by using the Spitzer model and ab initio transport coefficients.

16.
Article in English | MEDLINE | ID: mdl-23679528

ABSTRACT

We have calculated the equations of state, the viscosity and self-diffusion coefficients, and electronic transport coefficients of beryllium in the warm dense regime for densities from 4.0 to 6.0 g/cm(3) and temperatures from 1.0 to 10.0 eV by using quantum molecular dynamics simulations. The principal Hugoniot curve is in agreement with underground nuclear explosive and high-power laser experimental results up to ~20 Mbar. The calculated viscosity and self-diffusion coefficients are compared with the one-component plasma model, using effective charges given by the average-atom model. The Stokes-Einstein relationship, which connects viscosity and self-diffusion coefficients, is found to hold fairly well in the strong coupling regime. The Lorenz number, which is the ratio between thermal and electrical conductivities, is computed via Kubo-Greenwood formula and compared to the well-known Wiedemann-Franz law in the warm dense region.

17.
Phys Rev Lett ; 108(21): 215001, 2012 May 25.
Article in English | MEDLINE | ID: mdl-23003270

ABSTRACT

Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

18.
Phys Rev Lett ; 106(14): 145002, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21561197

ABSTRACT

We study the thermophysical properties of dense helium plasmas by using quantum molecular dynamics and orbital-free molecular dynamics simulations, where densities are considered from 400 to 800 g/cm3 and temperatures up to 800 eV. Results are presented for the equation of state. From the Kubo-Greenwood formula, we derive the electrical conductivity and electronic thermal conductivity. In particular, with the increase in temperature, we discuss the change in the Lorenz number, which indicates a transition from strong coupling and degenerate state to moderate coupling and partial degeneracy regime for dense helium.

SELECTION OF CITATIONS
SEARCH DETAIL
...