Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nat Commun ; 15(1): 5297, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906900

ABSTRACT

Cellulose fiber-based textiles are ubiquitous in daily life for their processability, biodegradability, and outstanding flexibility. Integrating cellulose textiles with functional coating materials can unlock their potential functionalities to engage diverse applications. Metal-organic frameworks (MOFs) are ideal candidate materials for such integration, thanks to their unique merits, such as large specific surface area, tunable pore size, and species diversity. However, achieving scalable fabrication of MOFs-textiles with high mechanical durability remains challenging. Here, we report a facile and scalable strategy for direct MOF growth on cotton fibers grafted via the diazonium chemistry. The as-prepared ZIF-67-Cotton textile (ZIF-67-CT) exhibits excellent ultraviolet (UV) resistance and organic contamination degradation via the peroxymonosulfate activation. The ZIF-67-CT is also used to encapsulate essential oils such as carvacrol to enable antibacterial activity against E. coli and S. aureus. Additionally, by directly tethering a hydrophobic molecular layer onto the MOF-coated surface, superhydrophobic ZIF-67-CT is achieved with excellent self-cleaning, antifouling, and oil-water separation performances. More importantly, the reported strategy is generic and applicable to other MOFs and cellulose fiber-based materials, and various large-scale multi-functional MOFs-textiles can be successfully manufactured, resulting in vast applications in wastewater purification, fragrance industry, and outdoor gears.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014634

ABSTRACT

Being the main components of physical sunscreens, zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are often used together in different brands of sunscreen products with different proportions. With the broad use of cosmetics containing these nanoparticles (NPs), concerns regarding their joint skin toxicity are becoming more and more prominent. In this study, the co-exposure of these two NPs in human-derived keratinocytes (HaCaT) and the in vitro reconstructed human epidermis (RHE) model EpiSkin was performed to verify their joint skin effect. The results showed that ZnO NPs significantly inhibited cell proliferation and caused deoxyribonucleic acid (DNA) damage in a dose-dependent manner to HaCaT cells, which could be rescued with co-exposure to TiO2 NPs. Further mechanism studies revealed that TiO2 NPs restricted the cellular uptake of both aggregated ZnO NPs and non-aggregated ZnO NPs and meanwhile decreased the dissociation of Zn2+ from ZnO NPs. The reduced intracellular Zn2+ ultimately made TiO2 NPs perform an antagonistic effect on the cytotoxicity caused by ZnO NPs. Furthermore, these joint skin effects induced by NP mixtures were validated on the epidermal model EpiSkin. Taken together, the results of the current research contribute new insights for understanding the dermal toxicity produced by co-exposure of different NPs and provide a valuable reference for the development of formulas for the secure application of ZnO NPs and TiO2 NPs in sunscreen products.

3.
Sci Total Environ ; 828: 154418, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35276137

ABSTRACT

Studies have shown that dissolved organic matters (DOMs) may affect soil nutrient availability to plants due to their effect on microbial communities; however, the relationships of soil DOM-bacterial community-N function in response to root exudates remains poorly understand. Here, we evaluated the DOM composition, bacterial taxonomic variation and nitrogen transformation rates in both acidic and alkaline soils, with or without the typical nitrate preference plant (wheat, Triticum aestivum L.). After 30 days' cultivation, DOM compositions such as sugars, amines, amino acids, organic acid, and ketone were significantly increased in soil with wheat vs. bare soil, and these compounds were mainly involved in nitrogen metabolism pathways. Soil core bacterial abundance was changed while bacterial community diversity decreased in response to wheat planting. Function prediction analysis based on FAPROTAX software showed that the bacterial community were significantly (p < 0.05) affiliated with nitrification and organic compound degradation. Additionally, db-RDA and VPA analysis suggested that the contribution of soil DOM to the variance of bacterial community was stronger than that of soil available nutrients. Furthermore, the N-transformation related bacteria like Burkholderiales and ammonia-oxidizing bacteria (AOB) were positively correlated with soil gross nitrification rate, confirming that the soil N transformation was enhanced in both acidic and alkaline soils. Our results provide insight into how soil DOM affects the community structure and function of bacteria to regulate the process of nitrogen transformation in plant-soil system.


Subject(s)
Nitrification , Soil , Ammonia/metabolism , Archaea/metabolism , Bacteria/metabolism , Dissolved Organic Matter , Nitrogen/metabolism , Oxidation-Reduction , Soil/chemistry , Soil Microbiology , Triticum/metabolism
4.
Dose Response ; 17(4): 1559325819878585, 2019.
Article in English | MEDLINE | ID: mdl-31662709

ABSTRACT

Microneedle (MN) delivery system has been greatly developed to deliver drugs into the skin painlessly, noninvasively, and safety. In the past several decades, various types of MNs have been developed by the newer producing techniques. Briefly, as for the morphologically, MNs can be classified into solid, coated, dissolved, and hollow MN, based on the transdermal drug delivery methods of "poke and patch," "coat and poke," "poke and release," and "poke and flow," respectively. Microneedles also have other characteristics based on the materials and structures. In addition, various manufacturing techniques have been well-developed based on the materials. In this review, the materials, structures, morphologies, and fabricating methods of MNs are summarized. A separate part of the review is used to illustrate the application of MNs to deliver vaccine, insulin, lidocaine, aspirin, and other drugs. Finally, the review ends up with a perspective on the challenges in research and development of MNs, envisioning the future development of MNs as the next generation of drug delivery system.

5.
Polymers (Basel) ; 11(1)2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30960040

ABSTRACT

Electrically conductive polymer composites are in high demand for modern technologies, however, the intrinsic brittleness of conducting conjugated polymers and the moderate electrical conductivity of engineering polymer/carbon composites have highly constrained their applications. In this work, super high electrical conductive polymer composites were produced by a novel hot embossing design. The polydimethylsiloxane (PDMS) composites containing short carbon fiber (SCF) exhibited an electrical percolation threshold at 0.45 wt % and reached a saturated electrical conductivity of 49 S/m at 8 wt % of SCF. When reducing the sample thickness from 1.0 to 0.1 mm by the hot embossing process, a compression-induced percolation threshold occurred at 0.3 wt %, while the electrical conductivity was further enhanced to 378 S/m at 8 wt % SCF. Furthermore, the addition of a second nanofiller of 1 wt %, such as carbon nanotube or conducting carbon black, further increased the electrical conductivity of the PDMS/SCF (8 wt %) composites to 909 S/m and 657 S/m, respectively. The synergy of the densified conducting filler network by the mechanical compression and the hierarchical micro-/nano-scale filler approach has realized super high electrically conductive, yet mechanically flexible, polymer composites for modern flexible electronics applications.

6.
Polymers (Basel) ; 11(2)2019 Jan 22.
Article in English | MEDLINE | ID: mdl-30960171

ABSTRACT

This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically.

7.
RSC Adv ; 8(63): 36007-36014, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-35558455

ABSTRACT

Constructing a compacted network in polymer matrices is an important method to improve the thermal conductivity (TC) of polymer composites. In this paper, a compacted network was built using the Spatial Confining Forced Network Assembly (SCFNA) method. The homogeneous compound of polymer and fillers, prepared using a conical twin-screw mixer, was placed in a compression mold with confining space to carry out two-stage compression, free compression and spatial confining compression. Aluminum oxide (Al2O3) was studied as filler in a polydimethylsiloxane (PDMS) matrix to illustrate the applicability of the SCFNA method. The polymer composites with an Al2O3 filler ranging from 10 to 80 wt% were prepared. When the filler content was 80 wt%, the TC of the PDMS/Al2O3 composites prepared using the SCFNA method increased by 16.35 times in comparison to the TC of pure PDMS. Observing the SEM of PDMS/Al2O3 composites with various thicknesses, the gap between fillers decreased with a decrease in thickness. The composite with TC up to 2.566 W (mK)-1 obtained at 80 wt% filler was further employed as a heat spreader, causing a decrease of about 8.23 °C in the set-point compared with the temperature of the heat source.

8.
Vet Microbiol ; 207: 56-62, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28757040

ABSTRACT

Porcine parvovirus virus (PPV) is an animal virus that has caused high economic losses for the swine industry worldwide. Previous studies demonstrated that PPV infection induced significant production of interleukin 6 (IL-6) in vitro and in vivo. However, the inflammatory cytokines and specific signaling pathways induced during PPV infection remain largely unknown. In the present study, we analyzed the expression levels of IL-6 in PPV-infected porcine kidney 15 (PK-15) and the results showed that PPV infection induced the increase of IL-6 mRNA expression in a dose-dependent manner. We also detected the expression of toll-like receptor 9 (TLR9) signaling proteins in the mRNA expressing level, when compared with the control group, the TLR9 expression in mRNA level increased at 24h in PK-15 cells after PPV infection and reached the peak level at 48h. In addition, the transcript profile of nuclear factor kappa B (NF-κB) signal pathway relating genes (MyD88, IRAK1, TRAF6, TAK1α, IκBκB and NF-κB) expression levels increased at different times. Furthermore, to verify the IL-6 expression was specific with the TLR9 expression and then by activating the NF-κB signal pathway, TLR9 and NF-κB specific inhibitors were applied during PPV infection, separately, the result indicated that the expression of IL-6 was decreased after inhibitor treatment. Taken together, PPV infection significantly induced IL-6 expression and this induction depended on NF-κB activation and TLR9 signaling pathways in PK-15 cell.


Subject(s)
Cytokines/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Parvovirus, Porcine/physiology , Toll-Like Receptor 9/metabolism , Animals , Cell Line , Cytokines/genetics , Gene Expression Regulation/immunology , NF-kappa B/genetics , Signal Transduction/physiology , Swine , Toll-Like Receptor 9/genetics , Transcriptome
9.
J Nat Prod ; 76(7): 1384-7, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23848189

ABSTRACT

Two novel alkaloids (parvifloranines A and B), possessing an unusual 11-carbon skeleton linked with amino acids, were isolated from Geijera parviflora, an endemic Australian Rutaceae. Their structures were elucidated by extensive spectroscopic measurements including 2D NMR analyses. Parvifloranine A was found to be a mixture of two enantiomers, (S)-1 and (R)-1, in a ratio of 1:4, based on their separation using a chiral column. Parvifloranine B is also believed to be a mixture of enantiomers. Proposed biosynthetic pathways are discussed. Parvifloranine A inhibited the synthesis of nitric oxide in LPS-stimulated RAW 264.7 macrophages with an IC50 value of 23.4 µM.


Subject(s)
Alkaloids/isolation & purification , Alkaloids/chemistry , Alkaloids/pharmacology , Animals , Australia , Inhibitory Concentration 50 , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mice , Molecular Structure , Nitric Oxide/biosynthesis , Nuclear Magnetic Resonance, Biomolecular , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...