Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Front Optoelectron ; 17(1): 16, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833110

ABSTRACT

In current documented studies, it has been observed that wavelength converters utilizing AlGaAsOI waveguides exhibit suboptimal on-chip wavelength conversion efficiency from the C-band to the 2 µm band, generally falling below -20.0 dB. To address this issue, we present a novel wavelength conversion device assisted by a waveguide amplifier, incorporating both AlGaAs wavelength converter and erbium-ytterbium co-doped waveguide amplifier, thereby achieving a notable conversion efficiency exceeding 0 dB. The noteworthy enhancement in efficiency can be attributed to the specific dispersion design of the AlGaAs wavelength converter, which enables an upsurge in conversion efficiency to -15.54 dB under 100 mW of pump power. Furthermore, the integration of an erbium-ytterbium co-doped waveguide amplifier facilitates a loss compensation of over 15 dB. Avoiding the use of external optical amplifiers, this device enables efficient and high-bandwidth wavelength conversion, showing promising applications in various fields, such as optical communication, sensing, imaging, and beyond.

2.
Anal Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780632

ABSTRACT

In this work, a micron-sized flower-like metal-organic frameworks (MOFs)-based boronate-affinity sandwich-type immunoassay was fabricated for the dual-mode glycoprotein assay. For proof of concept, the flower-like MOFs were synthesized from transition Cu nodes and tetrakis (4-carboxyphenyl) porphyrin (TCPP) ligands by spontaneous standing assembly. In addition, the specificity toward glycoprotein involved the antigen recognition as well as covalent bonding via the boronate-glycan affinity, and the immediate signal responses were initiated by textural decomposition of the flower-like MOFs. Intriguingly, Cu nodes, of which the valence state is dominant by CuI species, can endow the Fenton-like catalytic reaction of the fluorogenic substrate for generating fluorescence signals. For benefits, TCPP ligands, in which each TCPP molecule has four guest donors, can provide multiple valences for the assembly of cyclodextrin-capped gold nanoparticles via host-guest interaction for colorimetry output. Albeit important, the scaling micrometer patterns for the flower-like MOFs carrying numerous Cu nodes and TCPP ligands can also function as amplifying units, signifying the output signal. The detection limit of the dual-mode glycoprotein assay can reach 10.5 nM for the fluorescence mode and 18.7 nM for the colorimetry mode, respectively. Furthermore, the merits of harvesting different signal generators toward the multimodal readout patterns can allow the mutual verification and make the analytical results more reliable. Collectively, our proposed assay may offer a new idea in combining the inherent textural merits from MOFs for dual signal generators, which can also emphasize accurate detection capability for glycoprotein assay.

3.
Anal Methods ; 16(19): 3142-3153, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38713147

ABSTRACT

We develop and validate a method for the rapid determination and identification of 20 ß-lactamase antibiotics traces in goat's milk by combining the solid phase extraction technology with ultra-high performance liquid chromatography-tandem mass spectrometry. Goat milk samples were extracted with acetonitrile twice. The supernatant was then extracted and cleaned by solid-phase extraction using divinylbenzene and N-vinylpyrrolidone copolymer. The method was validated, with limits of quantification (LOQs) of 0.3 µg kg-1, specificities of 1/3 LOQ, linearities (R2) > 0.99, recoveries of 80-110%, repeatabilities <10.0%, and intermediate precisions <10.0%. The developed method was suitable for the routine analysis of ß-lactamase antibiotics residues in goat's milk and was used to test 76 goat milk samples produced in China.


Subject(s)
Anti-Bacterial Agents , Goats , Milk , Solid Phase Extraction , Tandem Mass Spectrometry , beta-Lactamases , Animals , Solid Phase Extraction/methods , Milk/chemistry , Tandem Mass Spectrometry/methods , Anti-Bacterial Agents/analysis , Chromatography, High Pressure Liquid/methods , Limit of Detection , Reproducibility of Results , Drug Residues/analysis , Food Contamination/analysis , Liquid Chromatography-Mass Spectrometry
4.
PLoS One ; 19(4): e0302150, 2024.
Article in English | MEDLINE | ID: mdl-38625994

ABSTRACT

Electroosmosis has been proposed as a technique to reduce moisture and thus increase the stability of soft clay. However, its high energy consumption and uneven reinforcement effect has limited its popularization and application in practical engineering. This paper presents the results of some electrokinetic tests performed on clayey specimens with different electrification time and anode boundary conditions. The results indicate that the timing of the formation of electroosmotic flow (EF) by the water originally contained in different soil cross sections, from the anode to the cathode, varies. The measuring soil cross section nearest the anode first reached the limiting water content of 22%±3% and electroosmosis had to be stopped. Water injection into the anode during electroosmosis enhanced further drainage of other four measuring soil cross sections until the second soil cross section from the anode reached the limiting water content of 30%±2%. Electroosmosis with water injection into the anode technique provides more uniform reinforcement, increasing EF, and environmental protection. The experimental results highlighted the relevant and expected contribution of water injection into the anode on the effectiveness of the electroosmotic treatment as a soft clay improvement technique.


Subject(s)
Electroosmosis , Soil Pollutants , Clay , Electroosmosis/methods , Soil Pollutants/analysis , Soil , Water
5.
Food Chem ; 451: 139418, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38677133

ABSTRACT

A dual-color ratiometric fluorescence sensor based on photonic crystals (PCs) was developed to detect tetracycline (TC) in food. PC was fabricated via self-assembly of carbon dots (CDs)-loaded SiO2 nanoparticles. Gold nanoclusters (AuNCs) and copper ions (Cu2+) were then adsorbed onto the PC for sensor fabrication. The fluorescence of AuNCs was amplified by the PC with an enhancement ratio of 7.6, providing higher sensitivity. The fluorescence of AuNCs was quenched by Cu2+, whereas that of CDs remained unchanged as an internal reference. TC restored the fluorescence of AuNCs owing to its complexation with Cu2+, resulting in a change in the fluorescence intensity ratio. The sensor exhibited a good linear relationship with TC concentrations ranging from 0.1 to 10 µM, with a detection limit of 34 nM. Furthermore, the sensor was applied for TC detection in food with satisfactory recoveries and relative standard deviations, revealing great potential in practical application.


Subject(s)
Food Contamination , Gold , Tetracycline , Tetracycline/analysis , Food Contamination/analysis , Gold/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Quantum Dots/chemistry , Fluorescence , Metal Nanoparticles/chemistry , Photons
6.
Mar Drugs ; 22(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38667792

ABSTRACT

Ulcerative colitis (UC) is a kind of inflammatory bowel condition characterized by inflammation within the mucous membrane, rectal bleeding, diarrhea, and pain experienced in the abdominal region. Existing medications for UC have limited treatment efficacy and primarily focus on symptom relief. Limonium bicolor (LB), an aquatic traditional Chinese medicine (TCM), exerts multi-targeted therapeutic effects with few side effects and is used to treat anemia and hemostasis. Nevertheless, the impact of LB on UC and its mechanism of action remain unclear. Therefore, the objective of this study was to investigate the anti-inflammatory effects and mechanism of action of ethanol extract of LB (LBE) in lipopolysaccharide-induced RAW 264.7 macrophages and dextran sulfate sodium (DSS)-induced UC. The results showed that LBE suppressed the secretion of cytokines in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. LBE had protective effects against DSS-induced colitis in mice, decreased the disease activity index (DAI) score, alleviated symptoms, increased colon length, and improved histological characteristics, thus having protective effects against DSS-induced colitis in mice. In addition, it reversed disturbances in the abundance of proteobacteria and probiotics such as Lactobacillus and Blautia in mice with DSS-induced UC. Based on the results of network pharmacology analysis, we identified four main compounds in LBE that are associated with five inflammatory genes (Ptgs2, Plg, Ppar-γ, F2, and Gpr35). These results improve comprehension of the biological activity and functionality of LB and may facilitate the development of LB-based compounds for the treatment of UC.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Dysbiosis , Ethanol , Gastrointestinal Microbiome , Plumbaginaceae , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Mice , RAW 264.7 Cells , Gastrointestinal Microbiome/drug effects , Dysbiosis/drug therapy , Plumbaginaceae/chemistry , Ethanol/chemistry , Male , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Cytokines/metabolism , Inflammation/drug therapy , Lipopolysaccharides , Mice, Inbred C57BL , Colon/drug effects , Colon/pathology , Colon/metabolism
7.
ACS Appl Bio Mater ; 7(4): 2499-2510, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38517141

ABSTRACT

As important biomarkers of many diseases, glycoproteins are of great significance to biomedical science. It is essential to develop efficient glycoprotein enrichment platforms and investigate their adsorption mechanism. In this work, a conspicuous enrichment strategy for glycoproteins was developed by using an electrospun fiber membrane wrapped with polydopamine (PDA) and modified with 3-aminophenylboronic acid and nickel ions, named PAN/DA@PDA@APBA/Ni. The enrichment characteristics of PAN/DA@PDA@APBA/Ni toward glycoproteins were explored through adsorption behavior. Thanks to the existence of two sites of interaction (metal ion chelation and boronate affinity), PAN/DA@PDA@APBA/Ni exhibited significant enrichment capacity for glycoproteins, ovalbumin (604.6 mg/g), and human immunoglobulin G (331.0 mg/g). The adsorption kinetic results of glycoprotein ovalbumin on PAN/DA@PDA@APBA/Ni conform to the pseudo-first-order kinetic model in the first adsorption stage, while the second half adsorption stage is more in line with the pseudo-second-order kinetic model. Moreover, the physical characteristics of PAN/DA@PDA@APBA/Ni and subsequent adsorption experiments on electrospun fiber modified with only phenylboronic acid or nickel ions both confirmed two sites of interaction (metal ion chelation and boronate affinity, respectively). Furthermore, a stepwise elution method with dual-affinity interaction was designed and successfully applied to enrich glycoproteins in real biological samples. This work provides an idea for sample pretreatment, especially for the design of dual-affinity materials in glycoproteins enrichment.


Subject(s)
Glycoproteins , Nickel , Humans , Ovalbumin , Adsorption , Ions
8.
Postgrad Med J ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491971

ABSTRACT

BACKGROUND: Endometriosis is a poorly understood disease that affects up to 196 million women worldwide and imposes high costs in terms of economic burden and quality of life of women. Traits of circulating lipids have been related to the onset and progression of endometriosis in previous observational studies but the results have remained contradictory. METHODS: We performed univariable and multivariable Mendelian randomization (MR) analyses using instrument variables to genetically predict the associations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, triglycerides, and apolipoprotein (apo) A-I and B from the UK Biobank with endometriosis (consisting of 8288 cases and 68 969 controls from the FinnGen consortium). The inverse-variance weighted (IVW) method was used as the primary estimate, whereas MR-Egger and weighted median were conducted as complements to the IVW model. RESULTS: Increased levels of triglycerides were associated with higher risk of endometriosis and endometriosis of the pelvic peritoneum in the univariable MR analyses. In multivariable MR analysis including apoB, LDL cholesterol, and triglycerides in the same model, triglycerides still retained a robust effect. Decreased levels of apoA-I and HDL cholesterol were associated with increased risk of endometriosis and endometriosis of the pelvic peritoneum in univariable MR analyses. After mutual adjustment, HDL cholesterol retained a robust effect whereas the association for apoA-I was attenuated. CONCLUSIONS: This is the first MR-based evidence to suggest that triglycerides and HDL cholesterol are the predominant traits that account for the aetiological relationship of lipoprotein lipids with risk of endometriosis, in particular endometriosis of the pelvic peritoneum. Further well-designed randomized controlled trials are needed to address these results.

9.
Mar Drugs ; 21(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37999419

ABSTRACT

A systematic investigation combined with a Global Natural Products Social (GNPS) molecular networking approach, was conducted on the metabolites of the deep-sea-derived fungus Samsoniella hepiali W7, leading to the isolation of three new fusaric acid derivatives, hepialiamides A-C (1-3) and one novel hybrid polyketide hepialide (4), together with 18 known miscellaneous compounds (5-22). The structures of the new compounds were elucidated through detailed spectroscopic analysis. as well as TD-DFT-based ECD calculation. All isolates were tested for anti-inflammatory activity in vitro. Under a concentration of 1 µM, compounds 8, 11, 13, 21, and 22 showed potent inhibitory activity against nitric oxide production in lipopolysaccharide (LPS)-activated BV-2 microglia cells, with inhibition rates of 34.2%, 30.7%, 32.9%, 38.6%, and 58.2%, respectively. Of particularly note is compound 22, which exhibited the most remarkable inhibitory activity, with an IC50 value of 426.2 nM.


Subject(s)
Fusaric Acid , Paecilomyces , Fusaric Acid/pharmacology , Macrophages , Anti-Inflammatory Agents , Molecular Structure
10.
Mar Drugs ; 21(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37888473

ABSTRACT

Three new polyketides (penidihydrocitrinins A-C, 1-3) and fourteen known compounds (4-17) were isolated from the deep-sea-derived Penicillium citrinum W17. Their structures were elucidated by comprehensive analyses of 1D and 2D NMR, HRESIMS, and ECD calculations. Compounds 1-17 were evaluated for their anti-inflammatory and anti-osteoporotic bioactivities. All isolates exhibited significant inhibitory effects on LPS-stimulated nitric oxide production in murine brain microglial BV-2 cells in a dose-response manner. Notably, compound 14 displayed the strongest effect with the IC50 value of 4.7 µM. Additionally, compounds 6, 7, and 8 significantly enhanced osteoblast mineralization, which was comparable to that of the positive control, purmorphamine. Furthermore, these three compounds also suppressed osteoclastogenesis in a dose-dependent manner under the concentrations of 2.5 µM, 5.0 µM, and 10 µM.


Subject(s)
Penicillium , Polyketides , Animals , Mice , Polyketides/pharmacology , Polyketides/chemistry , Molecular Structure , Penicillium/chemistry , Anti-Inflammatory Agents/pharmacology
11.
J Ethnopharmacol ; 317: 116747, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37311500

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ramulus Cinnamomi, the dried twig of Cinnamomum cassia (L.) J.Presl., is a traditional Chinese medicine (TCM) with anti-inflammatory effects. The medicinal functions of Ramulus Cinnamomi essential oil (RCEO) have been confirmed, although the potential mechanisms by which RCEO exerts its anti-inflammatory effects have not been fully elucidated. AIM OF THE STUDY: To investigate whether N-acylethanolamine acid amidase (NAAA) mediates the anti-inflammatory effects of RCEO. MATERIALS AND METHODS: RCEO was extracted by steam distillation of Ramulus Cinnamomi, and NAAA activity was detected using HEK293 cells overexpressing NAAA. N-Palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA), both of which are NAAA endogenous substrates, were detected by liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). The anti-inflammatory effects of RCEO were analyzed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells, and the cell viability was measured with a Cell Counting Kit-8 (CCK-8) kit. The nitric oxide (NO) in the cell supernatant was measured using the Griess method. The level of tumor necrosis factor-α (TNF-α) in the RAW264.7 cell supernatant was determined using an enzyme-linked immunosorbent assay (ELISA) kit. The chemical composition of RCEO was assessed by gas chromatography-mass spectroscopy (GC-MS). The molecular docking study for (E)-cinnamaldehyde and NAAA was performed by using Discovery Studio 2019 software (DS2019). RESULTS: We established a cell model for evaluating NAAA activity, and we found that RCEO inhibited the NAAA activity with an IC50 of 5.64 ± 0.62 µg/mL. RCEO significantly elevated PEA and OEA levels in NAAA-overexpressing HEK293 cells, suggesting that RCEO might prevent the degradation of cellular PEA and OEA by inhibiting the NAAA activity in NAAA-overexpressing HEK293 cells. In addition, RCEO also decreased NO and TNF-α cytokines in lipopolysaccharide (LPS)-stimulated macrophages. Interestingly, the GC-MS assay revealed that more than 93 components were identified in RCEO, of which (E)-cinnamaldehyde accounted for 64.88%. Further experiments showed that (E)-cinnamaldehyde and O-methoxycinnamaldehyde inhibited NAAA activity with an IC50 of 3.21 ± 0.03 and 9.62 ± 0.30 µg/mL, respectively, which may represent key components of RCEO that inhibit NAAA activity. Meanwhile, docking assays revealed that (E)-cinnamaldehyde occupies the catalytic cavity of NAAA and engages in a hydrogen bond interaction with the TRP181 and hydrophobic-related interactions with LEU152 of human NAAA. CONCLUSIONS: RCEO showed anti-inflammatory effects by inhibiting NAAA activity and elevating cellular PEA and OEA levels in NAAA-overexpressing HEK293 cells. (E)-cinnamaldehyde and O-methoxycinnamaldehyde, two components in RCEO, were identified as the main contributors of the anti-inflammatory effects of RCEO by modulating cellular PEA levels through NAAA inhibition.


Subject(s)
Lipopolysaccharides , Oils, Volatile , Humans , Lipopolysaccharides/pharmacology , Tumor Necrosis Factor-alpha , Oils, Volatile/pharmacology , Tandem Mass Spectrometry , HEK293 Cells , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Amidohydrolases/metabolism
12.
ACS Appl Mater Interfaces ; 15(26): 31139-31149, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37353471

ABSTRACT

Antimetabolites targeting thymidylate synthase (TS), such as 5-fluorouracil and capecitabine, have been widely used in tumor therapy in the past decades. Here, we present a strategy to construct mitochondria-targeted antimetabolic therapeutic nanomedicines based on fluorescent molecularly imprinted polymers (FMIP), and the nanomedicine was denoted as Mito-FMIP. Mito-FMIP, synthesized using fluorescent dye-doped silica as the carrier and amino acid sequence containing the active center of TS as the template peptide, could specifically recognize and bind to the active site of TS, thus inhibiting the catalytic activity of TS, and therefore hindering subsequent DNA biosynthesis, ultimately inhibiting tumor growth. The imprinting factor of FMIP reached 2.9, and the modification of CTPB endowed Mito-FMIP with the ability to target mitochondria. In vitro experiments demonstrated that Mito-FMIP was able to efficiently aggregate in mitochondria and inhibit CT26 cell proliferation by 59.9%. The results of flow cytometric analysis showed that the relative mean fluorescence intensity of Mito-FMIP accumulated in the mitochondria was 3.4-fold that of FMIP. In vivo experiments showed that the tumor volume of the Mito-FMIP-treated group was only one third of that of the untreated group. In addition, Mito-FMIP exibited the maximum emission wavelength at 682 nm, which allowed it to be used for fluorescence imaging of tumors. Taken together, this study provides a new strategy for the construction of nanomedicines with antimetabolic functions based on molecularly imprinted polymers.


Subject(s)
Molecular Imprinting , Neoplasms , Humans , Molecularly Imprinted Polymers , Thymidylate Synthase , Polymers/chemistry , Fluorouracil , Enzyme Inhibitors , Molecular Imprinting/methods
13.
Front Immunol ; 14: 1165576, 2023.
Article in English | MEDLINE | ID: mdl-37153571

ABSTRACT

Chimeric antigen receptor-T (CAR-T) cell therapy based on functional immune cell transfer is showing a booming situation. However, complex manufacturing processes, high costs, and disappointing results in the treatment of solid tumors have limited its use. Encouragingly, it has facilitated the development of new strategies that fuse immunology, cell biology, and biomaterials to overcome these obstacles. In recent years, CAR-T engineering assisted by properly designed biomaterials has improved therapeutic efficacy and reduced side effects, providing a sustainable strategy for improving cancer immunotherapy. At the same time, the low cost and diversity of biomaterials also offer the possibility of industrial production and commercialization. Here, we summarize the role of biomaterials as gene delivery vehicles in the generation of CAR-T cells and highlight the advantages of in-situ construction in vivo. Then, we focused on how biomaterials can be combined with CAR-T cells to better enable synergistic immunotherapy in the treatment of solid tumors. Finally, we describe biomaterials' potential challenges and prospects in CAR-T therapy. This review aims to provide a detailed overview of biomaterial-based CAR-T tumor immunotherapy to help investigators reference and customize biomaterials for CAR-T therapy to improve the efficacy of immunotherapy.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Biocompatible Materials , Immunotherapy/methods , T-Lymphocytes
14.
ACS Appl Mater Interfaces ; 15(21): 25898-25908, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37191997

ABSTRACT

The heat tolerance of tumor cells induced by heat shock proteins (HSPs) is the major factor that seriously hinders further application of PTT, as it can lead to tumor inflammation, invasion, and even recurrence. Therefore, new strategies to inhibit HSPs expression are essential to improve the antitumor efficacy of PTT. Here, we prepared a novel nanoparticle inhibitor by synthesizing molecularly imprinted polymers with a high imprinting factor (3.1) on the Prussian Blue surface (PB@MIP) for combined tumor starvation and photothermal therapy. Owing to using hexokinase (HK) epitopes as the template, the imprinted polymers could inhibit the catalytic activity of HK to interfere with glucose metabolism by specifically recognizing its active sites and then achieve starvation therapy by restricting ATP supply. Meanwhile, MIP-mediated starvation downregulated the ATP-dependent expression of HSPs and then sensitized tumors to hyperthermia, ultimately improving the therapeutic effect of PTT. As the inhibitory effect of PB@MIP on HK activity, more than 99% of the mice tumors were eliminated by starvation therapy and enhanced PTT.


Subject(s)
Hyperthermia, Induced , Molecular Imprinting , Nanoparticles , Neoplasms , Animals , Mice , Molecularly Imprinted Polymers , Photothermal Therapy , Hexokinase , Neoplasms/drug therapy , Nanoparticles/chemistry , Adenosine Triphosphate
15.
Talanta ; 260: 124638, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37156207

ABSTRACT

As a novel optical responsive material, photonic crystal is a promising sensing material in the recognition and detection of small molecules. Herein, a label-free composite sensor for aflatoxin B1 (AFB1) based on aptamer-functionalized photonic crystal arrays was successfully developed. Three-dimensional photonic crystals (3D PhCs) with a controllable number of layers were produced by a layer-by-layer (LBL) approach, and the introduction of gold nanoparticles (AuNPs) facilitated the immobilization procedure of recognition element aptamers, thus creating the AFB1 sensing detection system (AFB1-Apt 3D PhCs). The sensing system AFB1-Apt 3D PhCs exhibited a good linearity in the wide range of 1 pg mL-1-100 ng mL-1 AFB1 with a limit of detection (LOD) of 0.28 pg mL-1. Furthermore AFB1-Apt 3D PhC was successfully applied in the determination of AFB1 in the millet and beer samples with good recovery. The sensing system performed ultrasensitive and label-free detection to the target, which could be further applied in the fields of food safety, clinical diagnosis or environmental monitoring, establishing an efficient and rapid universal detection platform.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Aflatoxin B1/analysis , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Biosensing Techniques/methods , Limit of Detection
16.
Talanta ; 259: 124506, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37027934

ABSTRACT

In this work, we used a simple ultrasonic stripping method to synthesize a bimetal MOFs at room temperature as a nanoenzyme with peroxidase-like (POD-like) activity. Through bimetal MOFs catalytic Fenton-like competitive reaction, thiamphenicol can be quantitatively dual-mode detected by fluorescence and colorimetry. It realized the sensitive detection of thiamphenicol in water, and the limits of detection (LOD) were 0.030 nM and 0.031 nM, and the liner ranges were 0.1-150 nM and 0.1-100 nM, respectively. The methods were applied to river water, lake water and tap water samples, and with satisfactory recoveries between 97.67% and 105.54%.


Subject(s)
Thiamphenicol , Peroxidases , Peroxidase , Water , Colorimetry , Catalysis
17.
Anal Chem ; 95(16): 6664-6671, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37036832

ABSTRACT

Various physiological activities and metabolic reactions of cells need to be carried out under the corresponding pH environment. Intracellular GSH as an acid tripeptide and an important reducing substance also plays an important role in maintaining cellular acid-base balance and redox balance. Therefore, developing a method to monitor pH and GSH and their changes in cells is necessary. Herein, we developed a novel turn-on fluorescent silicon nanoparticles (SiNPs) using N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as the silicon source and dithiothreitol as the reducing agent via a one-pot hydrothermal method. It was worth mentioning that the fluorescence intensity of the SiNPs increased along with the acidity increase, making the SiNPs have excellent pH and GSH sensing capability. Furthermore, the pH and GSH sensing performance of the SiNPs in the cell was verified by confocal imaging and flow cytometry experiment. Based on the above, the prepared SiNPs had the potential to be used as an intracellular pH and GSH multimode fluorescent sensing platform and exhibited the ability to distinguish between normal cells and cancer cells.


Subject(s)
Nanoparticles , Silicon , Silicon/chemistry , Nanoparticles/chemistry , Fluorescent Dyes/chemistry , Hydrogen-Ion Concentration
18.
Article in English | MEDLINE | ID: mdl-36897016

ABSTRACT

Covalent organic frameworks (COFs) have attracted impressive interest in separation on aqueous media. Herein, we integrated the stable vinylene-linked COFs with magnetic nanosphere via the monomer-mediated in situ growth strategy to construct a crystalline Fe3O4@v-COF composite for enrichment and determination of benzimidazole fungicides (BZDs) from complex sample matrices. The Fe3O4@v-COF has a crystalline assembly, high surface area, porous character together with a well-defined core-shell structure, and serves as progressive pretreatment materials for magnetic solid phase extraction (MSPE) of BZDs. Adsorption mechanism studies revealed that the extended conjugated system and numerous polar cyan groups on v-COF provides abundant π-π and multiple hydrogen bonding sites, which are conducive to interact with BZDs collaboratively. Fe3O4@v-COF also displayed enrichment effects to various polar pollutions with conjugated structures and hydrogen-bonding sites. Fe3O4@v-COF-based MSPE-high-performance liquid chromatography exhibited the low limit of detection, wide linearity, and good precision. Moreover, Fe3O4@v-COF showed better stability, enhanced extraction performance, and more sustainable reusability in comparison with its imine-linked counterpart. This work proposes a feasible strategy on constructing the crystalline stable magnetic vinylene-linked COF composite for the determination of trace contaminants in complex food matrices.

19.
Talanta ; 251: 123772, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35970123

ABSTRACT

To date, the development of highly selective and efficient glycoproteins/peptides enrichment is still a challenge for mass spectrometry-based proteomic analysis. In this work, we reported a novel strategy to prepare a magnetic amide-linked covalent organic framework functionalized by benzoboroxole (denoted as Fe3O4@COF-ABB), which was then used as an adsorbent for the enrichment of glycoproteins. The physical and adsorption properties of Fe3O4@COF-ABB were fully investigated. The Fe3O4@COF-ABB presents a regular core-shell spherical structure, quick magnetic response performance, regular porosity, and multiple binding sites of phenylboronic acid. Taking advantage of these benefits, the synthesized magnetic composites exhibited a superior adsorption capacity (565.8 mg g-1) and high selectivity towards glycoprotein immunoglobulin G (IgG) under physiological state (pH 7.4). Additionally, the adsorbent Fe3O4@COF-ABB could be easily regenerated and reused 5 times with no reduction of enrichment performance. More importantly, the practical applications of Fe3O4@COF-ABB were further demonstrated by the selective adsorption of IgG from human serum. The present work represents a rational design of versatile functionalization of magnetic COFs, which demonstrates an avenue for the selective enrichment and analysis of IgG from real biological sample matrices.


Subject(s)
Metal-Organic Frameworks , Amides , Glycoproteins , Humans , Immunoglobulin G , Magnetic Phenomena , Metal-Organic Frameworks/chemistry , Proteomics
20.
Food Chem ; 402: 134239, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36122476

ABSTRACT

A novel photonic crystal aptamer biosensor SiO2-Au-ssDNA two-dimensional photonic crystal (2D PC), allowing label-free and highly sensitive to kanamycin (KANA), is successfully manufactured. This 2D PC biosensor was prepared via a needle tip flow method, using electrostatic adsorption to introduce negatively charged gold nanoparticles (Au NPs) into the 2D PC, combined with sulfhydryl-modified ssDNA for the rapid measurement. Benefiting from the localized surface plasmon resonance effect of Au NPs and optical response capability of PC, the biosensor has an excellent performance on quantitative analysis of KANA ranging from 5 pg∙mL-1 to 5 µg∙mL-1, with a limit of detection of 1.10 pg∙mL-1. The recovery of KANA is between 97 % and 110 % in the milk samples with relative standard deviation less than 4.8 %, which revealing that the 2D PC biosensor has the excellent performance on the KANA detection in complex conditions.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Animals , Kanamycin/analysis , Gold/chemistry , Milk/chemistry , Metal Nanoparticles/chemistry , Silicon Dioxide/analysis , Biosensing Techniques/methods , Aptamers, Nucleotide/chemistry , DNA, Single-Stranded , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...