Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894964

ABSTRACT

ADP-Glc pyrophosphorylase (AGPase), which catalyzes the transformation of ATP and glucose-1-phosphate (Glc-1-P) into adenosine diphosphate glucose (ADP-Glc), acts as a rate-limiting enzyme in crop starch biosynthesis. Prior research has hinted at the regulation of AGPase by phosphorylation in maize. However, the identification and functional implications of these sites remain to be elucidated. In this study, we identified the phosphorylation site (serine at the 31st position of the linear amino acid sequence) of the AGPase large subunit (Sh2) using iTRAQTM. Subsequently, to ascertain the impact of Sh2 phosphorylation on AGPase, we carried out site-directed mutations creating Sh2-S31A (serine residue replaced with alanine) to mimic dephosphorylation and Sh2-S31D (serine residue replaced with aspartic acid) or Sh2-S31E (serine residue replaced with glutamic acid) to mimic phosphorylation. Preliminary investigations were performed to determine Sh2 subcellular localization, its interaction with Bt2, and the resultant AGPase enzymatic activity. Our findings indicate that phosphorylation exerts no impact on the stability or localization of Sh2. Furthermore, none of these mutations at the S31 site of Sh2 seem to affect its interaction with Bt2 (smaller subunit). Intriguingly, all S31 mutations in Sh2 appear to enhance AGPase activity when co-transfected with Bt2, with Sh2-S31E demonstrating a substantial five-fold increase in AGPase activity compared to Sh2. These novel insights lay a foundational groundwork for targeted improvements in AGPase activity, thus potentially accelerating the production of ADP-Glc (the primary substrate for starch synthesis), promising implications for improved starch biosynthesis, and holding the potential to significantly impact agricultural practices.


Subject(s)
Starch , Starch/metabolism , Phosphorylation , Glucose-1-Phosphate Adenylyltransferase/genetics , Glucose-1-Phosphate Adenylyltransferase/metabolism , Amino Acid Sequence , Adenosine Diphosphate/metabolism
2.
Plants (Basel) ; 12(9)2023 May 06.
Article in English | MEDLINE | ID: mdl-37176958

ABSTRACT

To investigate changes in the yield and physiological characteristics of indica hybrid rice varieties sown on different dates, we evaluated appropriate hybrid rice varieties and their optimal sowing dates in the hilly areas of Sichuan. Three popular indica rice varieties were used as experimental materials, and five sowing dates were set uniformly locally [16 May (SD1), 23 May (SD2), 30 May (SD3), 6 June (SD4), and 13 June (SD5)] to investigate differences in the yield characteristics, growth period, and dry matter accumulation. The results showed that, over the two years, the sowing-to-heading period and overall growth period of the three varieties shortened as the sowing date was delayed, and the difference in yield between the SD1 and SD2 treatments was not significant, owing to higher material accumulation after flowering and higher assimilative material transport capacity. These varieties are both photosensitive and tolerant to low temperatures. Among the three varieties tested, the Huangyouyuehesimiao (V3) cultivar had the highest yield, with 10.75 t ha-1 under the SD2 treatment. The impact of shifting the sowing date on yield components varied. Delaying the sowing date increased and then decreased the number of effective panicles, and the number of grains per panicle and the seed setting rate decreased by differing degrees. In summary, a high yield of indica hybrid rice can be maintained by sowing between 16 and 23 May each year in the study area. It indicated that indica hybrid rice in the hilly rice-producing region of Sichuan is highly adaptable to different sowing dates.

3.
Plants (Basel) ; 12(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36986978

ABSTRACT

Brassinosteroids are a recently discovered group of substances that promote plant growth and productivity. Photosynthesis, which is vital for plant growth and high productivity, is strongly influenced by brassinosteroid signaling. However, the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize remains obscure. Here, we performed integrated transcriptome, proteome, and phosphoproteomic analyses to identify the key photosynthesis pathway that responds to brassinosteroid signaling. Transcriptome analysis suggested that photosynthesis antenna proteins and carotenoid biosynthesis, plant hormone signal transduction, and MAPK signaling in CK VS EBR and CK VS Brz were significantly enriched in the list of differentially expressed genes upon brassinosteroids treatment. Consistently, proteome and phosphoproteomic analyses indicated that photosynthesis antenna and photosynthesis proteins were significantly enriched in the list of differentially expressed proteins. Thus, transcriptome, proteome, and phosphoproteome analyses showed that major genes and proteins related to photosynthesis antenna proteins were upregulated by brassinosteroids treatment in a dose-dependent manner. Meanwhile, 42 and 186 transcription factor (TF) responses to brassinosteroid signals in maize leaves were identified in the CK VS EBR and CK VS Brz groups, respectively. Our study provides valuable information for a better understanding of the molecular mechanism underlying the photosynthetic response to brassinosteroid signaling in maize.

4.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902048

ABSTRACT

Maize is a main food and feed crop with great production potential and high economic benefits. Improving its photosynthesis efficiency is crucial for increasing yield. Maize photosynthesis occurs mainly through the C4 pathway, and NADP-ME (NADP-malic enzyme) is a key enzyme in the photosynthetic carbon assimilation pathway of C4 plants. ZmC4-NADP-ME catalyzes the release of CO2 from oxaloacetate into the Calvin cycle in the maize bundle sheath. Brassinosteroid (BL) can improve photosynthesis; however, its molecular mechanism of action remains unclear. In this study, transcriptome sequencing of maize seedlings treated with epi-brassinolide (EBL) showed that differentially expressed genes (DEGs) were significantly enriched in photosynthetic antenna proteins, porphyrin and chlorophyll metabolism, and photosynthesis pathways. The DEGs of C4-NADP-ME and pyruvate phosphate dikinase in the C4 pathway were significantly enriched in EBL treatment. Co-expression analysis showed that the transcription level of ZmNF-YC2 and ZmbHLH157 transcription factors was increased under EBL treatment and moderately positively correlated with ZmC4-NADP-ME. Transient overexpression of protoplasts revealed that ZmNF-YC2 and ZmbHLH157 activate C4-NADP-ME promoters. Further experiments showed ZmNF-YC2 and ZmbHLH157 transcription factor binding sites on the -1616 bp and -1118 bp ZmC4 NADP-ME promoter. ZmNF-YC2 and ZmbHLH157 were screened as candidate transcription factors mediating brassinosteroid hormone regulation of the ZmC4 NADP-ME gene. The results provide a theoretical basis for improving maize yield using BR hormones.


Subject(s)
Brassinosteroids , Transcription Factors , Zea mays , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Malate Dehydrogenase/metabolism , NADP/metabolism , Photosynthesis/genetics , Transcription Factors/metabolism , Zea mays/drug effects , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...