Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Water Res ; 260: 121922, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38878314

ABSTRACT

The transport of PFOS and PFOA in well-characterized sand was investigated for relatively low water saturations. An instrumented column was used for some experiments to provide real-time in-situ monitoring of water saturation and matric potential. The results showed that water saturations and matric potentials varied minimally during the experiments. Flow rates were monitored continuously and were essentially constant. These results demonstrate that surfactant-induced flow and other nonideal hydraulic processes did not materially impact PFAS transport for the experiment conditions. Air-water interfacial adsorption was demonstrated to provide the great majority of retention for PFOS and PFOA. Retention was significantly greater at the lower water saturations (0.35-0.45) compared to the higher saturations (∼0.66) for both PFAS, due to the larger extant air-water interfacial areas. Retardation factors were 5 and 3-times greater at the lower water saturations for PFOS and PFOA, respectively. Early breakthrough was observed for the PFAS but not for the non-reactive tracers at the lower water saturations, indicating the possibility that air-water interfacial adsorption was rate-limited to some degree. Independently determined retention parameters were used to predict retardation factors for PFOS and PFOA, which were similar to the measured values in all cases. The consistency between the predicted and measured values indicates that PFAS retention was accurately represented. In addition, air-water interfacial adsorption coefficients measured from the transport experiments were consistent with independently measured equilibrium-based values. Based on these results, it appears that the air-water interfacial adsorption processes mediating the magnitude of PFOS and PFOA retention under lower water-saturation conditions are consistent with those for higher water saturations. This provides some confidence that our understanding of PFAS retention obtained from work conducted at higher water saturations is applicable to lower water saturations.

2.
Environ Sci Technol ; 56(9): 5355-5370, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35446563

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Charcoal , Fluorocarbons/analysis , Humans , Incineration , Water Pollutants, Chemical/analysis
3.
Water Res ; 186: 116401, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32932094

ABSTRACT

The rapid and selective peroxymonosulfate (PMS) induced transformation of H1-antihistamines cetirizine (CET) and diphenhydramine (DPH) can be influenced by the presence of common organic and inorganic water constituents. Presence of HCO3- and/or CO32-, which often exhibit powerful inhibition on the advanced oxidation processes (AOPs), can enhance the PMS mediated transformation of CET/DPH. The observed promotion is demonstrated by the changed solution pH through detailed kinetic studies. The impact of halide ions is remarkable, with I- inhibiting the process through consumption of PMS, while Cl- increases slightly the transformation kinetics through the formation and subsequent reactions of HOCl. The CET/DPH degradation in the Br-/PMS system is influenced by the generation of reactive species such as HOBr which leads to different reaction pathways as compared to PMS alone. The results demonstrated the performance of PMS can be tailored through varying the experimental parameters. In addition, the presence of model organic constituents found in water, e.g., humic acid, phenol, pyridine or sorbate, has a minimal effect on the PMS mediated oxidation processes, highlighting the strong application potential of PMS in water treatment.


Subject(s)
Water Pollutants, Chemical , Histamine Antagonists , Kinetics , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 398: 123219, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32768849

ABSTRACT

With growing interest in advanced oxidation processes (AOPs), the number of research studies on peroxymonosulfate (PMS) mediated pollutant degradation has increased significantly due to its high radical generation potential upon activation. However, rare studies have focused on the non-radical based PMS reactions. In this study, degradation of model H1-antihistamines cetirizine (CET) and diphenhydramine (DPH) by unactivated PMS was investigated. Addition of scavengers to the reaction mixture ruled out the involvement of hydroxyl radical (OH), sulfate radical (SO4-), singlet oxygen (1O2) and superoxide anion radical (O2-), indicating direct PMS oxidation as the predominant reaction path. Such a mechanism was further supported by the N-oxide products identified by mass spectrometry and nuclear magnetic resonance (NMR) analyses. Solution pH had a pronounced influence on the degradation kinetics regardless the presence or absence of transition metal Fe(II). The highest species dependent second order rate constants were kHSO5-/DPH0 of 175 ± 15.9 M-1 s-1 and kHSO5-/CET- of 36.6 ± 0.16 M-1 s-1. The addition of 100 µM Fe(II) promoted OH mediated degradation of H1-antihistamines and their N-oxide products. This study demonstrated selective transformation with the potential for extensive degradation employing both the direct and catalytic PMS oxidative processes.


Subject(s)
Cetirizine , Water Pollutants, Chemical , Diphenhydramine , Histamine Antagonists , Oxidation-Reduction , Peroxides , Water Pollutants, Chemical/analysis
5.
J Hazard Mater ; 367: 734-742, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30037566

ABSTRACT

The photochemical degradation and mineralization of tyrosol (TSL), a model phenolic compound present in olive mill wastewater, were studied by UV-254 nm irradiated peroxymonosulfate (PMS), hydrogen peroxide (H2O2) and persulfate (PS). Effects of initial TSL concentration, UV fluence, pH, phosphate buffer and presence of inorganic anions (i.e., Cl-, SO42- and NO3-) were also investigated. Sulfate and hydroxyl radicals were demonstrated to be responsible for TSL degradation and mineralization. Regardless of the treatment conditions, pseudo-first-order kinetics could be obtained, with the efficiencies following UV/PS > UV/H2O2 > UV/PMS. The better removal of TSL by UV/PS correlated with the quantum yield and concentration of sulfate radical in the system. Albeit acidic condition slightly enhanced the performance of the AOPs, complete oxidation of TSL was achieved at pH 6.8 by both UV/PS and UV/H2O2. Though, inorganic anions or different concentrations of phosphate buffer did not affect TSL degradation kinetics, presence of inorganic ions decreased significantly the TOC removal for both UV/PMS and UV/H2O2 processes. Meanwhile, UV/PS process was the least influenced by inorganic ions and showed the highest TOC removal of ∼35%. Overall, UV/PS process was the most effective for TSL degradation and mineralization in the presence or absence of common water constituents.

6.
Environ Sci Technol ; 52(15): 8252-8262, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29920077

ABSTRACT

Microcystin-LR (MC-LR), an algal toxin (cyanotoxin) common in sources of drinking water, poses a major human health hazard due to its high toxicity. In this study, UV/chlorine was evaluated as a potentially practical and effective process for the degradation of MC-LR. Via mass spectrometry analysis, fewer chlorinated-MC-LR products were detected with UV/chlorine treatment than with chlorination, and a transformation pathway for MC-LR by UV/chlorine was proposed. Different degrees of rapid degradation of MC-LR were observed with varying pH (6-10.4), oxidant dosage (0.5-3 mg L-1), natural organic matter (0-7 mg L-1), and natural water sources. In contrast to the formation of primarily chloroform and dichloroacetic acid in deionized water where MC-LR serves as the only carbon source, additional chlorinated disinfection byproducts were produced when sand filtered natural water was used as a background matrix. The UV/chlorine treated samples also showed quantitatively less cytotoxicity in vitro in HepaRG human liver cell line tests than chlorination treated samples. Following 16 min (96 mJ cm-2) of UV irradiation combined with 1.5 mg L-1 chlorine treatment, the cell viability of the samples increased from 80% after exposure to 1 mg L-1 MC-LR to 90%, while chlorination treatment evidenced no reduction in cytotoxicity with the same reaction time.


Subject(s)
Chlorine , Water Purification , Halogenation , Humans , Marine Toxins , Microcystins
7.
Water Res ; 126: 515-523, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29017721

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) is an antibody-based analytical method that has been widely applied in water treatment utilities for the screening of toxic cyanobacteria metabolites such as microcystins (MCs). However, it is unknown how the minor structural difference of MCs may impact their chlorination kinetics and measurement via ELISA method. It was found in this study that, regardless of the experimental conditions (n = 21), there was no MC-YR or MC-LY residual, while different removal rates of other MCs were observed (MC-RR > MC-LR > MC-LA âˆ¼ MC-LF) as measured by liquid chromatography tandem mass spectrometry (LC-MS/MS), which was consistent with the relative reactivity of the amino acid variables with free chlorine. The removal of total MCs was generally lower as measured by ELISA than by LC-MS/MS. By incorporating both analytical results, existence of ADDA-containing byproducts or byproducts that had a higher sensitivity toward the ELISA kit was demonstrated, after excluding the contribution of the cross-reactivity of the parent MCs. It should be noted, however, that the cross-reactivities of MCs could be influenced not only by MC congeners, but also by other conditions such as mixtures and the applied ELISA kit.


Subject(s)
Chlorine/chemistry , Halogenation , Microcystins/analysis , Microcystins/chemistry , Chromatography, Liquid , Cyanobacteria/chemistry , Enzyme-Linked Immunosorbent Assay
8.
J Hazard Mater ; 323(Pt A): 489-499, 2017 Feb 05.
Article in English | MEDLINE | ID: mdl-27267651

ABSTRACT

Iodinated pharmaceuticals, thyroxine (a thyroid hormone) and diatrizoate (an iodinated X-ray contrast medium), are among the most prescribed active pharmaceutical ingredients. Both of them have been reported to potentially disrupt thyroid homeostasis even at very low concentrations. In this study, UV-254 nm-based photolysis and photochemical processes, i.e., UV only, UV/H2O2, and UV/S2O82-, were evaluated for the destruction of these two pharmaceuticals. Approximately 40% of 0.5µM thyroxine or diatrizoate was degraded through direct photolysis at UV fluence of 160mJcm-2, probably resulting from the photosensitive cleavage of C-I bonds. While the addition of H2O2 only accelerated the degradation efficiency to a low degree, the destruction rates of both chemicals were significantly enhanced in the UV/S2O82- system, suggesting the potential vulnerability of the iodinated chemicals toward UV/S2O82- treatment. Such efficient destruction also occurred in the presence of radical scavengers when biologically treated wastewater samples were used as reaction matrices. The effects of initial oxidant concentrations, solution pH, as well as the presence of natural organic matter (humic acid or fulvic acid) and alkalinity were also investigated in this study. These results provide insights for the removal of iodinated pharmaceuticals in water and/or wastewater using UV-based photochemical processes.


Subject(s)
Iodine Compounds/chemistry , Iodine Compounds/radiation effects , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/radiation effects , Diatrizoate/chemistry , Diatrizoate/radiation effects , Drug Residues/chemistry , Drug Residues/radiation effects , Free Radical Scavengers , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Photolysis , Thyroxine/chemistry , Thyroxine/radiation effects , Ultraviolet Rays , Wastewater/analysis
9.
J Hazard Mater ; 326: 101-109, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28011354

ABSTRACT

Spatial and temporal variations of trihalomethanes (THMs) in distribution systems have challenged water treatment facilities to comply with disinfection byproduct rules. In this study, granular activated carbon (GAC) and modified GAC (i.e., Ag-GAC and TiO2-GAC) were used to treat chlorinated tap water containing CHCl3 (15-21µg/L), CHBrCl2 (13-16µg/L), CHBr2Cl (13-14µg/L), and CHBr3 (3µg/L). Following breakthrough of dissolved organic carbon (DOC), GAC were regenerated using conventional and novel methods. GAC regeneration efficiency was assessed by measuring adsorptive (DOC, UV absorbance at 254nm, and THMs) and physical (surface area and pore volume) properties. Thermal regeneration resulted in a brief period of additional DOC adsorption (bed volume, BV, ∼6000), while ozone regeneration was ineffective regardless of the GAC type. THM adsorption was restored by either method (e.g., BV for ≥80% breakthrough, CHBr3 ∼44,000>CHBr2Cl ∼35,000>CHBrCl2 ∼31,000>CHCl3 ∼7000). Cellular and attached adenosine triphosphate measurements illustrated the antimicrobial effects of Ag-GAC, which may have allowed for the extended THM adsorption compared to the other GAC types. The results illustrate that ozone regeneration may be a viable in-situ alternative for the adsorption of THMs during localized treatment in drinking water distribution systems.


Subject(s)
Charcoal/chemistry , Ozone/chemistry , Trihalomethanes/chemistry , Adsorption , Halogenation , Spectrophotometry, Ultraviolet , Trihalomethanes/isolation & purification , Water , Water Microbiology , Water Purification
10.
Environ Sci Pollut Res Int ; 23(23): 23772-23780, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27623856

ABSTRACT

Degradation of dibuytl phthalate (DBP), a plasticizer and also a widely distributed endocrine disruptor, by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated in this study. A significant DBP removal of 77.1 % at an initial concentration of 1.0 µM was achieved at UV fluence of 160 mJ/cm2, initial H2O2 dosage of 1.0 mM, and pH of 7.6 ± 0.1. The DBP degradation exhibited a pseudo-first-order reaction kinetic pattern, with the rate constants linearly increasing with increasing H2O2 dosage while decreasing with increasing initial DBP concentration and pH value in a specific range. DBP destruction was significantly inhibited in the presence of alkalinity and natural organic matter (NOM), two known factors that should be taken a serious consideration of in the research and design of UV/H2O2-based AOPs. Presence of common inorganic anions (i.e., Cl-, SO42-, and NO3-) and metal cations (i.e., Fe3+ and Zn2+) had a slight impact on the degradation of DBP, although Cu2+ could improve the degradation efficiency even at a concentration as low as 0.01 mg/L, suggesting a strong potential of applying UV/H2O2 for the removal of DBP with an environmental relevant level of copper.


Subject(s)
Dibutyl Phthalate/chemistry , Endocrine Disruptors/chemistry , Photolysis , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Plasticizers/chemistry , Ultraviolet Rays
11.
Water Res ; 95: 195-204, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27131094

ABSTRACT

Carbonate radical (CO3(•-)), a selective oxidant, reacts readily with electron-rich compounds through electron transfer and/or hydrogen abstraction. In this study, the role of CO3(•-) in degrading oxytetracycline (OTC) by UV only, UV/H2O2 and UV/persulfate (UV/PS) advanced oxidation processes (AOPs) in the presence of HCO3(-) or CO3(2-) was investigated. For UV only process, the presence of photosensitizers, i.e., nitrate (NO3(-)) and natural organic matter (NOM), had different impacts on OTC degradation, i.e., an enhancing effect by NO3(-) due to the generation of HO(•) and a slight inhibiting effect by NOM possibly due to a light scattering effect. Differently for UV/H2O2 and UV/PS processes, the presence of NO3(-) hardly influenced the destruction of OTC. Generation of CO3(•-) presented a positive role on OTC degradation by UV/NO3(-)/HCO3(-). Such influence was also observed in the two studied AOPs in the presence of both bicarbonate and other natural water constituents. When various natural water samples from different sources were used as reaction matrices, UV only and UV/H2O2 showed an inhibiting effect while UV/PS demonstrated a comparable or even promoting effect in OTC decomposition. After elucidating the potential contribution of UV direct photolysis via excited state OTC* at an elevated reaction pH condition, putative OTC transformation byproducts via CO3(•-) reaction were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Five different reaction pathways were subsequently proposed, including hydroxylation (+16 Da), quinonization (+14 Da), demethylation (-14 Da), decarbonylation (-28 Da) and dehydration (-18 Da). The significant role of UV at high pH and CO3(•-) on OTC removal from contaminated water was therefore demonstrated both kinetically and mechanistically.


Subject(s)
Hydrogen Peroxide/chemistry , Oxytetracycline/chemistry , Carbonates/chemistry , Kinetics , Ultraviolet Rays , Water Pollutants, Chemical/chemistry
12.
Water Res ; 101: 10-16, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27240297

ABSTRACT

Colonial cell disaggregation and release of intracellular microcystin were evaluated following chlorine treatment of naturally occurring Microcystis. Microscopic observations of water samples collected from Lake Mead, Nevada, USA, confirmed the presence of colonial Microcystis with cells protected by an outer sheath up to 30 µm thick. During chlorination, two stages of cell decomposition were observed, stage 1: colonial cell disaggregation, and stage 2: unicellular degradation. Following a [Cl2]0:DOC0 ratio of 0.15 (t = 20 min, pH = 8.2-8.5) in unfiltered Lake Havasu samples, total particle count increased from (1.0 ± 0.11) × 10(5) to 4.2 × 10(5) particles/mL and fluorescent particle count increased from (1.2 ± 0.50) × 10(4) to 1.2 × 10(5) particles/mL, illustrating colonial cell disaggregation. Although total and fluorescent particles increased, the concentration of chlorophyll-a (Chl-a) decreased from 81 µg/L to 72 µg/L, and continued to decrease at higher [Cl2]0:DOC0 ratios. The preliminary second order rate constant for the reaction between Microcystis and chlorine in natural waters was estimated using either Chl-a (k = 15 M(-1) s(-1)) or fluorescence particle count (k = 38 M(-1) s(-1)) as an indicator of cell damage following colonial disaggregation (i.e., at [Cl2]0:DOC0 ratio ≥0.15). Complete release of intracellular microcystin-LR (MC-LR) was observed in both Lake Havasu and Lake Mead samples when applying a [Cl2]0:DOC0 ratio of 0.30 (t = 20 min), which was equivalent to a chlorine exposure of 8 min-mg/L for Lake Havasu samples. With chlorination, DOC increased by 3-18% indicating release of either colony-bound or cell-bound DOC. The results demonstrated the ability of chlorine to disaggregate/inactivate natural Microcystis colonies, and identified oxidation conditions resulting in complete release of intracellular MC-LR.


Subject(s)
Microcystins/chemistry , Microcystis/metabolism , Chlorine/metabolism , Halogenation , Lakes
13.
Environ Sci Pollut Res Int ; 23(14): 14307-15, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27055892

ABSTRACT

In UV-254 nm/H2O2 advanced oxidation process (AOP), the potential degradation pathways for organic pollutants include (1) hydrolysis, (2) direct H2O2 oxidation, (3) UV direct photolysis, and (4) hydroxyl radical (HO(•)) reaction. In this study, the contribution of these pathways was quantitatively assessed in the photochemical destruction of 4-chlorophenol (4-CP), demonstrating pathways (3) and (4) to be predominantly responsible for the removal of 4-CP by UV/H2O2 in 50 mM phosphate buffer solution. Increasing reaction pH could significantly enhance the contribution of direct photolysis in UV/H2O2 process. The contribution of HO(•) oxidation was improved with increasing initial H2O2 concentration probably due to the increased formation of HO(•). Presence of sodium carbonate (Na2CO3) as in UV/H2O2/Na2CO3 system promoted the degradation of 4-CP, with carbonate radical (CO3 (•-)) reaction and direct photolysis identified to be the main contributing pathways. The trends in the contribution of each factor were further evaluated and validated on the degradation of the antibiotic compound oxytetracycline (OTC). This study provides valuable information on the relative importance of different reaction pathways on the photochemical degradation of organic contaminants such as 4-CP and OTC in the presence and absence of a CO3 (•-) precursor.


Subject(s)
Chlorophenols , Oxytetracycline , Photolysis , Water Pollutants, Chemical , Water Purification/methods , Chlorophenols/analysis , Chlorophenols/chemistry , Chlorophenols/radiation effects , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Oxytetracycline/analysis , Oxytetracycline/chemistry , Oxytetracycline/radiation effects , Ultraviolet Rays , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
14.
Harmful Algae ; 54: 174-193, 2016 04.
Article in English | MEDLINE | ID: mdl-28073475

ABSTRACT

Blooms of toxic cyanobacteria in water supply systems are a global issue affecting water supplies on every major continent except Antarctica. The occurrence of toxic cyanobacteria in freshwater is increasing in both frequency and distribution. The protection of water supplies has therefore become increasingly more challenging. To reduce the risk from toxic cyanobacterial blooms in drinking water, a multi-barrier approach is needed, consisting of prevention, source control, treatment optimization, and monitoring. In this paper, current research on some of the critical elements of this multi-barrier approach are reviewed and synthesized, with an emphasis on the effectiveness of water treatment technologies for removing cyanobacteria and related toxic compounds. This paper synthesizes and updates a number of previous review articles on various aspects of this multi-barrier approach in order to provide a holistic resource for researchers, water managers and engineers, as well as water treatment plant operators.


Subject(s)
Cyanobacteria/physiology , Drinking Water/microbiology , Water Purification/standards , Antarctic Regions , Cyanobacteria/chemistry , Cyanobacteria/isolation & purification , Water Supply/standards
15.
J Hazard Mater ; 305: 229-239, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26686482

ABSTRACT

Oxytetracycline (OTC), an important broad-spectrum antibiotic, has been detected extensively in various environmental systems, which may have a detrimental impact on ecosystem and human health through the development of drug resistant bacteria and pathogens. In this study, the degradation of OTC was evaluated by UV-254nm activated persulfate (PS). The observed UV fluence based pseudo first-order rate constant (kobs) was found to be the highest at near neutral pH conditions (pH 5.5-8.5). Presence of various natural water constituents had different effects on OTC degradation, with a significant enhancement in the presence of bicarbonate or Cu(2+). Limited elimination of total organic carbon (TOC) and PS was observed during the mineralization of OTC. Transformation byproducts in the presence and absence of hydroxyl radical scavenging agent tert-butanol (t-BuOH) were identified using ultra-high definition accurate-mass quadrupole time-of-flight liquid chromatography/mass spectrometer (LC-QTOF/MS). Potential OTC degradation mechanism was subsequently proposed revealing four different reaction pathways by SO4(-) reaction including hydroxylation (+16Da), demethylation (-14Da), decarbonylation (-28Da) and dehydration (-18Da). This study suggests that UV-254nm/PS is a promising treatment technology for the control of water pollution caused by emerging contaminants such as OTC.


Subject(s)
Anti-Bacterial Agents/chemistry , Oxytetracycline/chemistry , Sodium Compounds/chemistry , Sodium Compounds/radiation effects , Sulfates/chemistry , Sulfates/radiation effects , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Kinetics , Water Purification/methods
16.
Water Res ; 74: 227-38, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25744186

ABSTRACT

Hepatotoxic microcystins (MCs) are the most frequently detected group of cyanobacterial toxins. This study investigated the degradation of common MC variants in water, MC-LR, MC-RR, MC-YR and MC-LA, by UV-254 nm-based processes, UV only, UV/H2O2, UV/S2O8(2-) and UV/HSO5(-). Limited direct photolysis of MCs was observed, while the addition of an oxidant significantly improved the degradation efficiency with an order of UV/S2O8(2-) > UV/HSO5(-) > UV/H2O2 at the same initial molar concentration of the oxidant. The removal of MC-LR by UV/H2O2 appeared to be faster than another cyanotoxin, cylindrospermopsin, at either the same initial molar concentration or the same initial organic carbon concentration of the toxin. It suggested a faster reaction of MC-LR with hydroxyl radical, which was further supported by the determined second-order rate constant of MCs with hydroxyl radical. Both isomerization and photohydration byproducts were observed in UV only process for all four MCs; while in UV/H2O2, hydroxylation and diene-Adda double bond cleavage byproducts were detected. The presence of a tyrosine in the structure of MC-YR significantly promoted the formation of monohydroxylation byproduct m/z 1061; while the presence of a second arginine in MC-RR led to the elimination of a guanidine group and the absence of double bond cleavage byproducts. It was therefore demonstrated in this study that the variable amino acids in the structure of MCs influenced not only the degradation kinetics but also the preferable reaction mechanisms.


Subject(s)
Hydrogen Peroxide/chemistry , Microcystins/chemistry , Sulfates/chemistry , Ultraviolet Rays , Water Purification/methods , Amino Acids/chemistry , Hydroxyl Radical , Kinetics , Microcystins/radiation effects , Oxidation-Reduction , Photolysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
17.
Water Res ; 73: 353-61, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25697697

ABSTRACT

This study investigated the mechanistic effects of basic pH and the presence of high carbonate concentration on the TiO2 photocatalytic degradation of the cyanobacterial toxin cylindrospermopsin (CYN). High-performance liquid chromatography combined with quadrupole time-of-flight electrospray ionization tandem mass spectrometry (LC/Q-TOF-ESI-MS) was employed for the identification of reaction byproducts. The reaction pathways were proposed based on the identified degradation byproducts and radical chemistry. In high pH system (pH = 10.5) similar reaction byproducts as those in neutral pH system were identified. However, high pH appeared to inhibit sulfate elimination with less sulfate elimination byproducts detected. In the presence of carbonate in the photocatalytic process, hydroxyl radical reaction would be largely inhibited since carbonate ion would react with hydroxyl radical to form carbonate radical. The second order rate constant of carbonate radical with CYN was estimated to be 1.4 × 10(8) M(-1)s(-1), which is much smaller than that of hydroxyl radical. However, the more significant abundance of carbonate radical in the reaction solution strongly contributed to the transformation of CYN. Carbonate radical has higher reaction selectivity than hydroxyl radical and hence, played a different role in the photocatalytic reaction. It would promote the formation of byproduct m/z 420.12 which has not been identified in the other two studied photocatalytic systems. Besides, the presence of carbonate ion may hinder the removal of toxicity originated from uracil moiety due to the low reaction activity of carbonate radical with uracil moiety in CYN molecule. This work would further support the application of photocatalytic technologies for CYN treatment and provide fundamental information for the complete assessment of CYN removal by using TiO2 photocatalysis process.


Subject(s)
Carbonates/analysis , Photolysis , Titanium/chemistry , Uracil/analogs & derivatives , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry , Alkaloids , Bacterial Toxins , Chromatography, High Pressure Liquid , Cyanobacteria Toxins , Hydrogen-Ion Concentration , Tandem Mass Spectrometry , Uracil/chemistry
18.
J Hazard Mater ; 282: 233-40, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25123523

ABSTRACT

Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254nm/H2O2 advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0mM [H2O2]0, a complete removal of 40.0µM parent PBSA and 25% decrease in TOC were achieved with 190min of UV irradiation; SO4(2-) was formed and reached its maximum level while the release of nitrogen as NH4(+) was much lower (around 50%) at 190min. Sulfate removal was strongly enhanced by increasing [H2O2]0 in the range of 0-4.0mM, with slight inhibition in 4.0-12.0mM. Faster and earlier ammonia formation was observed at higher [H2O2]0. The presence of Br(-) slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl(-). Our study provides important technical and fundamental results on the HO based degradation and mineralization of SO3H and N-containing UV absorber compounds.


Subject(s)
Benzimidazoles , Hydrogen Peroxide/chemistry , Oxidants/chemistry , Sulfonic Acids , Sunscreening Agents , Ultraviolet Rays , Water Pollutants, Chemical , Ammonium Compounds/chemistry , Benzimidazoles/chemistry , Benzimidazoles/radiation effects , Bromine/chemistry , Chlorine/chemistry , Sulfates/chemistry , Sulfonic Acids/chemistry , Sulfonic Acids/radiation effects , Sunscreening Agents/chemistry , Sunscreening Agents/radiation effects , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
19.
J Hazard Mater ; 279: 375-83, 2014 Aug 30.
Article in English | MEDLINE | ID: mdl-25086235

ABSTRACT

The extensive production and usage of antibiotics have led to an increasing occurrence of antibiotic residuals in various aquatic compartments, presenting a significant threat to both ecosystem and human health. This study investigated the degradation of selected ß-lactam antibiotics (penicillins: ampicillin, penicillin V, and piperacillin; cephalosporin: cephalothin) by UV-254nm activated H2O2 and S2O8(2-) photochemical processes. The UV irradiation alone resulted in various degrees of direct photolysis of the antibiotics; while the addition of the oxidants improved significantly the removal efficiency. The steady-state radical concentrations were estimated, revealing a non-negligible contribution of hydroxyl radicals in the UV/S2O8(2-) system. Mineralization of the ß-lactams could be achieved at high UV fluence, with a slow formation of SO4(2-) and a much lower elimination of total organic carbon (TOC). The transformation mechanisms were also investigated showing the main reaction pathways of hydroxylation (+16Da) at the aromatic ring and/or the sulfur atom, hydrolysis (+18Da) at the ß-lactam ring and decarboxylation (-44Da) for the three penicillins. Oxidation of amine group was also observed for ampicillin. This study suggests that UV/H2O2 and UV/S2O8(2-) advanced oxidation processes (AOPs) are capable of degrading ß-lactam antibiotics decreasing consequently the antibiotic activity of treated waters.


Subject(s)
Anti-Bacterial Agents/chemistry , Hydrogen Peroxide/chemistry , Sodium Compounds/chemistry , Sulfates/chemistry , beta-Lactams/chemistry , Anti-Bacterial Agents/analysis , Hydrogen Peroxide/radiation effects , Hydroxyl Radical/chemistry , Kinetics , Photolysis , Sodium Compounds/radiation effects , Sulfates/radiation effects , Ultraviolet Rays , beta-Lactams/analysis
20.
Water Res ; 63: 168-78, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25000199

ABSTRACT

Cylindrospermopsin (CYN) is a potent cyanobacterial toxin frequently found in water bodies worldwide raising concerns over the safety of drinking and recreational waters. A number of technologies have been investigated to remove and/or degrade cyanotoxins with advanced oxidation processes (AOPs) being among the most promising and effective for water detoxification. In this study, the degradation of CYN by sulfate radical-based UV-254 nm-AOPs was evaluated. The UV/S2O8(2-) (UV/peroxydisulfate) was more efficient than UV/HSO5(-) (UV/peroxysulfate) and UV/H2O2 (UV/hydrogen peroxide) processes when natural water samples were used as reaction matrices. The observed UV fluence based pseudo-first-order rate constants followed the expected order of radical quantum yields. The presence of 200 µM natural organic matter (NOM) as carbon slightly inhibited the destruction of CYN; 1.24 mg L(-1)NO3(-) (nitrate) had no significant influence on the removal efficiency and 50 µg L(-1) Fe(2+) [iron (2+)] or Cu(2+) [copper (2+)] improved the performance of UV/S2O8(2-). The addition of tert-butyl alcohol (t-BuOH; hydroxyl radical scavenger) in the reaction yielded byproducts that indicated specific sites in CYN preferentially attacked by sulfate radicals (SRs). The predominant CYN degradation byproduct was P448 consistent with fragmentation of the C5C6 bond of the uracil ring. The subsequent formation of P420 and P392 through a stepwise loss of carbonyl group(s) further supported the fragmentation pathway at C5C6. The byproduct P432 was identified exclusively as mono-hydroxylation of CYN at tricyclic guanidine ring, whereas P414 was detected as dehydrogenation at the tricyclic ring. The elimination of sulfate group and the opening of tricyclic ring were also observed. The possible degradation pathways of CYN by SR-AOP were presented.


Subject(s)
Bacterial Toxins/radiation effects , Sulfates/chemistry , Ultraviolet Rays , Uracil/analogs & derivatives , Water Pollutants, Chemical/radiation effects , Water Purification/methods , Alkaloids , Cyanobacteria Toxins , Kinetics , Oxidation-Reduction , Uracil/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...