Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 324: 117767, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38224795

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Anoectochilus elatus Lindl. was traditionally used for pain treatment and Gooderoside A (GA) was regarded as its principal constituent. AIM OF THE STUDY: To investigate whether GA can be responsible for the antinociceptive activity of A. elatus and explore its underlying mechanism. MATERIALS AND METHODS: Acetic acid-induced abdominal writhing and tail flick tests were employed to evaluate the antinociceptive activity of ethanolic extract of A. elatus (EEA) and GA. Formalin test was used to ascertain the antinociceptive pattern of GA. Entobarbital sodium induced sleep test was adopted to exclude its hypnotic effect, while open-field test was performed to rule out its motor impairment effect. Chronic constriction injury (CCI)-induced neuropathic pain in rats was developed to evaluate its efficacy on neuropathic pain, and BV-2 cells were used to explore the underlying mechanism. RESULTS: EEA and GA, significantly inhibited chemical and thermal nociception. GA suppressed nociception in formalin test in both phase I and II, whereas methylene blue and L-NAME partially reversed its efficacy. GA located inner and slightly blocked sodium channel current, and did not show any hypnotic effect or motor impairment effect. Crucially, GA markedly attenuated chronic neuropathic pain in rats, inhibited the phosphorylation of IRAK4, IRAK1 and TAK1, and suppressed MAPKs pathway in BV-2 cells. CONCLUSION: GA relieved acute and chronic pains in vivo. The mechanism of action involves the blocking of NO/cGMP and IRAK4/IRAK1/TAK1 pathways. These results suggested GA may be a promising candidate for antinociceptive drug development.


Subject(s)
Chronic Pain , Neuralgia , Rats , Animals , Chronic Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Interleukin-1 Receptor-Associated Kinases , Neuralgia/drug therapy , Cyclic GMP , Signal Transduction , Hypnotics and Sedatives
2.
PhytoKeys ; 234: 203-218, 2023.
Article in English | MEDLINE | ID: mdl-37927971

ABSTRACT

A new species of Anoectochilus (Orchidaceae) from Guangxi, China, A.zhongshanensis, is described here, which was identified based on phylogenetic studies adopting combined plastid markers (rbcL-matK-trnL-F), morphological observation and chemical analysis. Molecular phylogenetic results support the systematic status of A.zhongshanensis as a new species in Anoectochilus genus. Morphologically, this new species is similar to A.zhejiangensis and A.malipoensis, but differs by its characteristic labellum and column, including the hastate or scalpel-shaped lobes of epichile, forward curved and pinnately divided cristate lobes at both sides of the mesochile and inverted triangle column wings. Furthermore, HPLC-ELSD analysis of these three species revealed the interesting chemotaxonomic difference that the principle and characteristic lactone glycoside in this new species was kinsenoside, rather than its diastereoisomer, goodyeroside A, a major glycoside in A.zhejiangensis and A.malipoensis.

3.
Sensors (Basel) ; 23(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37896462

ABSTRACT

Ensuring road safety, structural stability and durability is of paramount importance, and detecting road cracks plays a critical role in achieving these goals. We propose a GM-ResNet-based method to enhance the precision and efficacy of crack detection. Leveraging ResNet-34 as the foundational network for crack image feature extraction, we consider the challenge of insufficient global and local information assimilation within the model. To overcome this, we incorporate the global attention mechanism into the architecture, facilitating comprehensive feature extraction across the channel and the spatial width and height dimensions. This dynamic interaction across these dimensions optimizes feature representation and generalization, resulting in a more precise crack detection outcome. Recognizing the limitations of ResNet-34 in managing intricate data relationships, we replace its fully connected layer with a multilayer fully connected neural network. We fashion a deep network structure by integrating multiple linear, batch normalization and activation function layers. This construction amplifies feature expression, stabilizes training convergence and elevates the performance of the model in complex detection tasks. Moreover, tackling class imbalance is imperative in road crack detection. Introducing the focal loss function as the training loss addresses this challenge head-on, effectively mitigating the adverse impact of class imbalance on model performance. The experimental outcomes on a publicly available crack dataset emphasize the advantages of the GM-ResNet in crack detection accuracy compared to other methods. It is worth noting that the proposed method has better evaluation indicators in the detection results compared with alternative methodologies, highlighting its effectiveness. This validates the potency of our method in achieving optimal crack detection outcomes.

5.
Phytother Res ; 37(4): 1422-1434, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36737044

ABSTRACT

The seeds of Vitex negundo have been used for inflammation-related disease treatment in traditional medicine. This study focused on the anti-osteoarthritis (OA) effects of the total lignans of V. negundo seeds (TOV) in monosodium iodoacetate-induced osteoarthritis rats and its pharmacokinetic properties, as well as the effects and potential mechanism of its main components VN1 (6-hydroxy-4-(4-hydroxy-3-methoxy-phenyl)-3-hydro-xymethyl-7-methoxy-3,4-dihydro-2-naphthaldehydeb) and VN2 (vitedoin A) on receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation in bone marrow macrophages (BMMs). TOV significantly attenuated osteoarthritis, leading to an increase in pain thresholds, improvement of knee articular cartilages and chondrocytes loss, and decreased total joint scores and serum levels of TNF-α, interleukin-1ß (IL-1ß), and prostaglandin E2 (PGE2) in osteoarthritis rats. The half-time (T1/2 ) was 2.82 h and 1.33 h, and the bioavailability was 15.34%-21.89% and 16.29%-22.11%, for VN1 and VN2, respectively. VN2, rather than VN1, remarkably inhibited tartrate-resistant acid phosphatase (TRAP) activity, reduced the number of TRAP-positive multinuclear cells, diminished the formation of actin ring, and decreased mRNA levels of cathepsin K (CTSK), TRAP, nuclear factor of activated T cell 1 (NFATc1), and osteoclast-associated receptor, as well as downregulated protein levels of p-ERK (phosphorylated extracellular signal-regulated kinase), TRAP, CTSK and NFATc1 in BMMs. These findings suggest TOV has promising therapeutic potential for OA treatment and VN2, in particular, attenuates osteoclast differentiation by suppressing ERK/NFATc1 signaling and actin ring, mainly accounting for the anti-OA efficacy of TOV.


Subject(s)
Lignans , Vitex , Rats , Animals , Osteoclasts , Vitex/metabolism , Actins/metabolism , T-Lymphocytes , Lignans/pharmacology , Cell Differentiation
6.
Int J Biol Macromol ; 233: 123542, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740119

ABSTRACT

Anoectochilus elatus is a new record species from Yunnan province in China discovered by our group in 2018, used in folk as the most popular Anoectochilus species A. roxburghii for medicinal and culinary purposes. The crude polysaccharide of Anoectochilus elatus (AEP) exhibited significant antinociceptive effects against both chemical and thermal nociception in vivo. Bio-guided isolation identified GJXL-1 as the leading analgesic polysaccharide in AEP. Detailed structural analyses rationalized GJXL-1 (molecular weight: 10.3 kDa) as an α-D-1,4-linked glucan unexpectedly branched at O-3, and O-6 position. GJXL-1 dose-dependently suppressed acetic acid-induced writhing in mice and decreased the serum levels of NO, IL-6 and TNF-α, which also repressed the licking times in both the first and second phases in formalin test. Furthermore, only L-nitroarginine partly reversed the analgesic activity of GJXL-1, indicating that GJXL-1's efficacy was partially mediated by NO regulation, possibly through inhibiting IRAK4/TAK1/NF-κB signaling pathway, and modulating gut microbiota and short-chain fatty acids production. In addition, the motor impairment and hypnotic effects of GJXL-1 were excluded. Our study suggests that GJXL-1 can be regarded as a promising and safe drug candidate for diverse pain disorders, and also a promising prebiotic candidate to maintain intestinal homeostasis and promote human gut health.


Subject(s)
Analgesics , Polysaccharides , Mice , Humans , Animals , China , Polysaccharides/chemistry , Analgesics/pharmacology , Glucans , Acetic Acid , Plant Extracts/chemistry
7.
J Adv Res ; 49: 81-102, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36195283

ABSTRACT

BACKGROUND: Trichoderma species are rich source of bioactive secondary metabolites. In the past decades, a series of secondary metabolites were reported from different Trichoderma fungi, among which terpenoids possessing versatile structural diversities and extensive pharmacological activities are one of the particularly important categories. AIM OF REVIEW: The review aims to summarize the terpenoids isolated from Trichoderma species regarding their structural diversities, biological activities, and promising biosynthetic potentials. KEY SCIENTIFIC CONCEPTS OF REVIEW: So far, a total of 253 terpenoids, including 202 sesquiterpenes, 48 diterpenes, 2 monoterpenes and 1 meroterpenoid, were isolated and identified from Trichoderma species between 1948 and 2022. Pharmacological investigations of Trichoderma terpenoids mainly focused on their antibacterial activities, antifungal activities, inhibitory activities on marine plankton species and cytotoxic activities, indicating that Trichoderma species are important microbial agents for drug discovery and environmentally friendly agrochemicals development. Intriguing chemistry and enzymology involved in the biosynthesis of Trichoderma terpenoids were also presented to facilitate further precise genome mining-guided novel structure discovery. Taken together, the abundance of novel skeletons, bioactivities and biosynthetic potentials presents new opportunities for drug and agrochemicals discovery, genome mining and enzymology exploration from Trichoderma species. The work will provide references for the profound study of terpenoids derived from Trichoderma, and facilitate further studies on Trichoderma species in the areas of chemistry, medicine, agriculture and microbiology.


Subject(s)
Sesquiterpenes , Trichoderma , Terpenes/metabolism , Trichoderma/chemistry , Trichoderma/genetics , Trichoderma/metabolism , Soil , Sesquiterpenes/chemistry , Sesquiterpenes/metabolism , Antifungal Agents/pharmacology
8.
Sensors (Basel) ; 22(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35746335

ABSTRACT

Due to the coupling impacts of solar radiation, wind, air temperature and other environmental parameters, the temperature field of steel structures is significantly non-uniform during their construction and service stages. Corrugated web steel beams have gained popularity in structural engineering during the last few decades, while their thermal actions are barely investigated. In this paper, both experimental and numerical investigations were conducted to reveal the non-uniform features and time variation of the corrugated web steel beams under various environmental conditions. The heat-transfer simulation model was established and verified using the experimental temperature data. Both the experiment and simulation results demonstrate that the steel beam has a complicated and non-uniform temperature field. Moreover, 2-year continuous numerical simulations of steel beams' thermal actions regarding eight different cities were carried out to investigate the long-term temperature variations. Finally, based on the long-term simulation results and extreme value analysis (EVA), the representative values of steel beams' daily temperature difference with a 50-year return period were determined. The extreme temperature difference of the steel beam in Harbin reached up to 46.9 °C, while the extreme temperature difference in Haikou was 28.8 °C. The extreme temperature difference is highly associated with the steel beam's location and surrounding climate. Ideally, the outcomes will provide some contributions for the structural design regarding the corrugated web steel beam.

9.
Sensors (Basel) ; 22(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35161961

ABSTRACT

The intelligent crack detection method is an important guarantee for the realization of intelligent operation and maintenance, and it is of great significance to traffic safety. In recent years, the recognition of road pavement cracks based on computer vision has attracted increasing attention. With the technological breakthroughs of general deep learning algorithms in recent years, detection algorithms based on deep learning and convolutional neural networks have achieved better results in the field of crack recognition. In this paper, deep learning is investigated to intelligently detect road cracks, and Faster R-CNN and Mask R-CNN are compared and analyzed. The results show that the joint training strategy is very effective, and we are able to ensure that both Faster R-CNN and Mask R-CNN complete the crack detection task when trained with only 130+ images and can outperform YOLOv3. However, the joint training strategy causes a degradation in the effectiveness of the bounding box detected by Mask R-CNN.


Subject(s)
Algorithms , Neural Networks, Computer
10.
Sensors (Basel) ; 22(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009942

ABSTRACT

Structural damage identification technology is of great significance to improve the reliability and safety of civil structures and has attracted much attention in the study of structural health monitoring. In this paper, a novel structural damage identification method based on transmissibility in the time domain is proposed. The method takes the discrepancy of transmissibility of structure response in the time domain before and after damage as the basis of finite element model updating. The damage is located and quantified through iteration by minimizing the difference between the measurements at gauge locations and the reconstruction response extrapolated by the finite element model. Taking advantage of the response reconstruction method based on empirical mode decomposition, damage information can be obtained in the absence of prior knowledge on excitation. Moreover, this method directly collects time-domain data for identification without modal identification and frequent time-frequency conversion, which can greatly improve efficiency on the premise of ensuring accuracy. A numerical example is used to demonstrate the overall damage identification method, and the study of measurement noise shows that the method has strong robustness. Finally, the present work investigates the method through a simply supported overhanging beam. The experiments collect the vibration strain signals of the beam via resistance strain gauges. The comparison between identification results and theoretical values shows the effectiveness and accuracy of the method.


Subject(s)
Vibration , Reproducibility of Results
11.
Int J Biol Macromol ; 198: 111-118, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34968535

ABSTRACT

Two new polysaccharides, AZP-1a and AZP-1d, with molecular weights of 3.41 × 104 and 4568 Da, respectively, were extracted from Anoectochilus zhejiangensis and purified by column chromatography. Their structural characteristics were systematically explored and results indicated AZP-1a and AZP-1d shared a similar backbone consisted of→4)-Galp-(1→, →4)-Glcp-(1→, and →4,6)-Glcp-(1→, with a different terminal residue of Manp-(1 â†’ and Glcp-(1→, respectively. In vivo experiments showed that the crude polysaccharide of A. zhejiangensis (AZP) exhibited significant hepatoprotective effects, decreasing the serum levels of ALT, AST and LDH in CCl4-treated mice, reducing MDA content, promoting SOD and CAT activities, and increasing GSH level in liver. Further in vitro investigation exhibited that AZP, AZP-1a and AZP-1d effectively protected liver cells against CCl4-stimulated oxidative damage, while AZP-1a and AZP-1d functioned mainly through the activation of Nrf2 signaling pathway. Our results suggest that A. zhejiangensis polysaccharides can be applied as a potential resource for the development of hepatoprotective drugs.


Subject(s)
Polysaccharides
12.
Front Pharmacol ; 12: 738235, 2021.
Article in English | MEDLINE | ID: mdl-34630112

ABSTRACT

Prostate cancer is the second most common malignant cancer in males. It involves a complex process driven by diverse molecular pathways that closely related to the survival, apoptosis, metabolic and metastatic characteristics of aggressive cancer. Prostate cancer can be categorized into androgen dependent prostate cancer and castration-resistant prostate cancer and cure remains elusive due to the developed resistance of the disease. Natural compounds represent an extraordinary resource of structural scaffolds with high diversity that can offer promising chemical agents for making prostate cancer less devastating and curable. Herein, those natural compounds of different origins and structures with potential cytotoxicity and/or in vivo anti-tumor activities against prostate cancer are critically reviewed and summarized according to the cellular signaling pathways they interfere. Moreover, the anti-prostate cancer efficacy of many nutrients, medicinal plant extracts and Chinese medical formulations were presented, and the future prospects for the application of these compounds and extracts were discussed. Although the failure of conventional chemotherapy as well as involved serious side effects makes natural products ideal candidates for the treatment of prostate cancer, more investigations of preclinical and even clinical studies are necessary to make use of these medical substances reasonably. Therefore, the elucidation of structure-activity relationship and precise mechanism of action, identification of novel potential molecular targets, and optimization of drug combination are essential in natural medicine research and development.

13.
AIDS Res Hum Retroviruses ; 37(12): 978-984, 2021 12.
Article in English | MEDLINE | ID: mdl-34465138

ABSTRACT

Unique recombinant forms (URFs) are more likely developed among HIV-1 infections through men who have sex with men (MSM) because of cocirculation of multiple subtypes. In this study, two novel URFs deriving from two HIV-positive subjects (HB010014, HB010063) were identified in Shijiazhuang, Hebei province, China, and two sequences formed a distinct monophyletic cluster. Further recombination analysis showed that of two new URFs were consisted of circulating recombinant form (CRF)01_AE and CRF07_BC. The subregion phylogenetic analysis indicated that CRF01_AE segments were traced back to cluster 4 of CRF01_AE strains, which were prevalent among HIV-1 infections through MSM in China. New URFs being developing gradually and spreading released that more and more novel recombinant strains of HIV-1 could be developed, which means that the past prevention strategies need to be adjusted.


Subject(s)
HIV Infections , HIV-1 , Sexual and Gender Minorities , China/epidemiology , Genome, Viral , Genomics , Genotype , HIV-1/genetics , Homosexuality, Male , Humans , Male , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA
14.
Sensors (Basel) ; 21(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502728

ABSTRACT

The suspended monorail (SM) vehicle-bridge system has been considered a promising modern transit mode due to its clear advantages: low pollution, high safety, convenient construction, and low cost. The wind-induced response can significantly affect the running safety and comfort of this type of vehicle due to its special suspended position from a fixed track. This study is the first to systematically investigate its aerodynamic characteristics and interference effects under various spacing ratios using wind tunnel tests and numerical simulations. A high level of agreement between the wind tunnel test and CFD (computational fluid dynamics) results was obtained, and the aerodynamic interference mechanism can be well explained using the CFD technique from a flow field perspective. A wireless wind pressure acquisition system is proposed to achieve synchronization acquisition for multi wind pressure test taps. The paper confirms that (1) the proposed wireless wind pressure acquisition system performed well; (2) the aerodynamic coefficients of the upstream vehicle and bridge were nearly unchanged for vehicle-bridge combinations with varying spacing ratios; (3) the aerodynamic interference effects were amplified when two vehicles meet, but the effects decrease as the spacing ratio increases; (4) the aerodynamic force coefficients, mean, and root mean square (RMS) wind pressure coefficients for the downstream vehicle and bridge are readily affected by the upstream vehicle; (5) the vortex shedding frequencies of vehicles and bridges can be readily obtained from the lift force spectra, and they decrease as the spacing ratio increases; and (6) a spacing ratio of 3.5 is suggested in the field applications to ensure the running safety and stability of the SM vehicle-bridge system under exposure to crosswinds.

15.
Article in English | MEDLINE | ID: mdl-34360459

ABSTRACT

The unprecedented COVID-19 pandemic has caused a traffic tie-up across the world. In addition to home quarantine orders and travel bans, the social distance guideline of about six feet was enacted to reduce the risk of contagion. However, with recent life gradually returning to normal, the crisis is not over. In this research, a moving train test and a Gaussian puff model were employed to investigate the impact of wind raised by a train running on the transmission and dispersion of SARS-CoV-2 from infected individuals. Our findings suggest that the 2 m social distance guideline may not be enough; under train-induced wind action, human respiratory disease-carrier droplets may travel to unexpected places. However, there are deficiencies in passenger safety guidelines and it is necessary to improve the quantitative research in the relationship between train-induced wind and virus transmission. All these findings could provide a fresh insight to contain the spread of COVID-19 and provide a basis for preventing and controlling the pandemic virus, and probe into strategies for control of the disease in the future.


Subject(s)
COVID-19 , Pandemics , Humans , Quarantine , SARS-CoV-2 , Wind
16.
Fitoterapia ; 151: 104874, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33667565

ABSTRACT

Chemical investigation on the solid rice culture of Chaetomium globosum D38, an endophytic fungus derived from Salvia miltiorrhiza, has afforded two new 19,20-seco-chaetoglobosins, salchaetoglobosins A (1) and B (2), along with three known analogues, chaetoglobosins E (3), Fex (4), and Vb (5). Their structures and absolute configurations were elucidated by a set of spectroscopy and single-crystal X-ray crystallography. Compounds 1-5 were evaluated for their cytotoxic activities against HCT-116 (colorectal carcinoma) and PC3 (prostate cancer) cells, as well as the NO production inhibitory effects in LPS-stimulated RAW264.7 cells.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Chaetomium/chemistry , Indole Alkaloids/pharmacology , Salvia miltiorrhiza/microbiology , Animals , Anti-Inflammatory Agents/isolation & purification , Antineoplastic Agents/isolation & purification , China , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Indole Alkaloids/isolation & purification , Mice , Molecular Structure , Nitric Oxide/metabolism , PC-3 Cells , RAW 264.7 Cells
17.
Materials (Basel) ; 13(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32972008

ABSTRACT

Wind barrier structures on railway bridges are installed to mitigate the wind effects on travelling trains; however, they cause additional wind loads and associated aerodynamic effects on the bridge. An innovative concept was developed for a wind barrier structure in this study that used a glass-fibre-reinforced polymer (GFRP) that may deform properly when subjected to a crosswind. Such deformation then allows for wind to pass, therefore reducing the wind loads transferred to the bridge. Wind tunnel experiments were conducted on a 1/40-scale train and bridge models with the proposed GFRP barrier subjected to airflow at different speeds up to 20 m/s. The side-force and overturning-moment coefficients of both the train and the bridge were evaluated to characterise the aerodynamic effects. The results show that favourable side-force and overturning-moment coefficients of the train were provided by wind barriers taller than 10 cm. The aerodynamic coefficients of the train were not significantly affected by the airflow speeds; meanwhile, the overturning-moment coefficient of the bridge decreased with the increase in airflow speed due to smaller wind resistance of the barrier after deformation. A numerical analysis was conducted on both the reduced- and full-scale models of the train-barrier-bridge system and the results supported the findings obtained from the wind tunnel experiments.

18.
J Ethnopharmacol ; 261: 112992, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-32590113

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Osteoporosis and Alzheimer's disease (AD) are both senile diseases, which are closely related to oxidative stress. Bajitianwan (BJTW) is a classic Chinese formulation consisting of seven herbal drugs: the root of Morinda officinalis F.C.How., root and rhizome of Acorus tatarinowii Schott, the root bark of Lycium chinense Mill., the sclerotium of Poria cocos (Schw.) Wolf, the root of Polygala tenuifolia Willd., sclerotium with host wood of Poria cocos (Schw.) Wolf and root and rhizome of Panax ginseng C. A. Mey. BJTW has been used for the treatment of osteoporosis and AD for hundreds of years. AIM OF THE STUDY: This study aimed to investigate the protective effects of BJTW in the amelioration of memory impairment and bone loss induced by D-galactose and to explore the underlying mechanism. MATERIALS AND METHODS: The aging model was established in male Wistar rats by subcutaneous injection of D-galactose (100 mg/kg), and the rats were treated with huperzine-A, alendronate sodium, or the aqueous extract of BJTW for 4 months. Cognitive performance was evaluated with the Morris water maze. Rat femurs were scanned using microcomputed tomography to obtain three-dimensional imagery of bone microstructure. The impact of D-galactose on the expression of Forkhead box O1 and superoxide dismutase 2 in femur tissue was also evaluated. RESULTS: For the model group, BJTW treatment significantly reduced the latency time for finding the target platform in the directional swimming test and increased time spent swimming in the target quadrant with the probe test. Additionally, BJTW treatment alleviated D-galactose-induced bone loss through regulation of levels of alkaline phosphatase, osteocalcin, osteoprotegerin, and receptor activator of nuclear factor kappa B ligand. Furthermore, BJTW treatment increased catalase and glutathione peroxidase levels in serum, reduced malondialdehyde content in hippocampus, and upregulated expression of Forkhead O1, which upregulated superoxide dismutase 2 in the femur. CONCLUSIONS: BJTW had positive effects on age-related memory impairments and bone loss. It may be a promising antioxidant candidate for treatment of Alzheimer's disease and osteoporosis.


Subject(s)
Antioxidants/pharmacology , Behavior, Animal/drug effects , Bone Density Conservation Agents/pharmacology , Bone Remodeling/drug effects , Drugs, Chinese Herbal/pharmacology , Femur/drug effects , Hippocampus/drug effects , Maze Learning/drug effects , Memory Disorders/prevention & control , Nootropic Agents/pharmacology , Osteoporosis/prevention & control , Oxidative Stress/drug effects , Age Factors , Animals , Cognition/drug effects , Disease Models, Animal , Femur/metabolism , Femur/physiopathology , Galactose , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/physiopathology , Osteoporosis/chemically induced , Osteoporosis/metabolism , Osteoporosis/physiopathology , Rats, Wistar
19.
Article in English | MEDLINE | ID: mdl-32325799

ABSTRACT

The interior noise and vibration of metro vehicles have been the subject of increasing concern in recent years with the development of the urban metro systems. However, there still is a lack of experimental studies regarding the interior noise and vibration of metro vehicles. Therefore, overnight field experiments of the interior noise and vibration of a standard B-type metro train running on a viaduct were conducted on metro line 14 of Guangzhou (China). Both the A-weighted sound pressure level and linear sound pressure level were used to evaluate the interior noise signals in order to revel the underestimation of the low-frequency noise components. The results show that the interior noise concentrates in the low-to-middle frequency range. Increasing train speeds have significant effects on the sound pressure level inside the vehicle. However, two obvious frequency ranges (125-250 Hz and 400-1000 Hz) with respective corresponding center frequencies (160 Hz and 800 Hz) of the interior noise are nearly independent of train speed. The spectrum analysis of the vehicle body vibration shows that the frequency peak of the floor corresponds to the first frequency peak of the interior noise spectrum. There are two frequency peaks around 40 Hz and 160 Hz of the sidewall's acceleration level. The frequency peaks of the acceleration level are also independent of the train speeds. It hopes that the field measurements in this paper can provide a data set for researchers for further investigations and can contribute to the countermeasures for reducing interior noise and vibration of a metro vehicle.


Subject(s)
Motor Vehicles , Noise , Vibration , Acceleration , China
20.
Sensors (Basel) ; 20(8)2020 Apr 23.
Article in English | MEDLINE | ID: mdl-32340292

ABSTRACT

Digital image projection (DIP) with traditional vertical calibration cannot be used for measuring the water droplets/film on a curved surface, because significant systematic error will be introduced. An improved DIP technique with normal calibration is proposed in the present paper, including the principles, operation procedures and analysis of systematic errors, which was successfully applied to measuring the water droplets/film on a curved surface. By comparing the results of laser profiler, traditional DIP, improved DIP and theoretical analysis, advantages of the present improved DIP technique are highlighted.

SELECTION OF CITATIONS
SEARCH DETAIL
...