Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(10): 2697-702, 2015 Oct.
Article in Chinese | MEDLINE | ID: mdl-26904802

ABSTRACT

We specify water vapor among combustion products as the target gas based on tunable diode absorption spectroscopy in this paper. The direct absorption signals of water vapor after being processed can be used to calculate the gas concentration distributions and temperature distributions of the combustion region of methane and air flat flame furnace via algebraic reconstruction technique (ART). In the numerical simulation, reconstruction region is a grid of five by five, we assume a temperature and water vapor concentration distribution of 25 grid, then simulate different direction laser rays which cross the combustion region, generating projection of each ray, by ART reconstruction algorithm, it turns out that the temperature and water vapor distribution reconstruction error is less than 1%. In the experiment, we chose a distributed-feedback laser to scan the target gas H2O7 153.722, 7 153.748 and 7 154.354 cm(-1) as absorbtion line pair to measure temperature of the flame, we consider the former two line as one absorbtion line. By Stages multi-directional scanning, the authors abtain 16 different regions distributin of temperature and gas concentration of furnace when we collecte 30 different angle data by spectral data processing, reconstruction algorithm, two absorbtion line ratio method for temperature sensing, finding the temperature and water concentration are higher in the center than in the edge, it turns out that the reconstruction algorithm is good enough to achieve the distributions of gas concentration and temperature of the combustion region.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(12): 3174-7, 2014 Dec.
Article in Chinese | MEDLINE | ID: mdl-25881402

ABSTRACT

Tunable diode laser absorption spectroscopy (TDLAS) has been developed to realize the real-time and dynamic measurement of the combustion temperature, gas component concentration, velocity and other flow parameters, owing to its high sensitivity, fast time response, non-invasive character and robust nature. In order to obtain accurate water vapor concentration at high temperature, several absorption spectra of water vapor near 1.39 µm from 773 to 1273 K under ordinary pressure were recorded in a high temperature experiment setup using a narrow band diode laser. The absorbance of high temperature absorption spectra was calculated by combined multi-line nonlinear least squares fitting method. Two water vapor absorption lines near 7154.35 and 7157.73 cm(-1) were selected for measurement of water vapor at high temperature. A model method for high temperature water vapor concentration was first proposed. Water vapor concentration from the model method at high temperature is in accordance with theoretical reasoning, concentration measurement standard error is less than 0.2%, and the relative error is less than 6%. The feasibility of this measuring method is verified by experiment.

3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 881-5, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23841390

ABSTRACT

Tunable diode laser absorption spectroscopy (TDLAS) is a new gas detection technique developed recently with high spectral resolution, high sensitivity and fast time response. The second-harmonic signal of wavelength modulation spectroscopy (WMS) is often used as the detection signal for gas concentration inversion. Using Simulink, a visual modeling and simulation platform, the authors simulated the WMS signal based on TDLAS, and got the second-harmonic signal by using lock-in amplifier algorithm. Digital orthogonal algorithm was studied in this paper. The relationship between second-harmonic signals and the modulation indexes was analyzed by comparing changes of second-harmonic under different modulation indexes, in order to find out the optimized parameters for second-harmonic detection.

SELECTION OF CITATIONS
SEARCH DETAIL
...