Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Inflamm Res ; 17: 4199-4217, 2024.
Article in English | MEDLINE | ID: mdl-38974001

ABSTRACT

Introduction: Endometriosis (EM) is a chronic estrogen-dependent condition characterized by the growth of endometrial-like tissue outside the uterus, posing a significant burden on reproductive-aged women. Previous research has shown a correlation between gut microbiota dysbiosis and interleukin-17A (IL-17A) in EM patients. IL-17A, a promising immunomodulatory molecule, exerts dual roles in human physiology, driving inflammatory diseases. However, the functions and origins of IL-17A in EM remain poorly characterized. Methods: Single-cell data analysis was employed to characterize IL-17A activity in EM lesions. Fecal microbiota transplantation was conducted to explore the impact of gut microbiota on EM. Gut microbiota and bile acid metabolism were assessed via 16S rRNA sequencing and targeted metabolomics. Th17 cell proportions were measured using flow cytometry. Results: High expression of IL-17 receptor A (IL-17RA) was observed in myeloid cell subpopulations within EM lesions and may be involved in the migration and recruitment of inflammatory cells in lesions. Elevated IL-17A levels were further validated in peritoneal and follicular fluids of EM patients. Dysregulated bile acid levels, particularly elevated chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA), were found in the gut and peritoneal fluid of EM mouse models. Additional CDCA administration reduced EM lesions and modulated Th17 cell proportions, while UDCA showed no significant effects. Discussion: Our findings shed light on the origins and functions of IL-17A in EM, implicating its involvement in lesion migration and recruitment. Dysregulated bile acid metabolism may contribute to EM pathogenesis, with CDCA exhibiting therapeutic potential.

2.
Food Funct ; 15(9): 5073-5087, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38656276

ABSTRACT

L-Arabinose, lactulose, and Lactobacillus plantarum (L. plantarum) have been reported to have glucolipid-lowering effects. Here, the effects of L-arabinose and lactulose combined with L. plantarum on obesity traits were investigated. According to the experimental results, the combination of L-arabinose, lactulose, and L. plantarum was more effective at reducing body weight, regulating glucolipid metabolism, and improving insulin resistance. Besides, this combination showed immunomodulatory activity by adjusting the T lymphocyte subsets and reduced the immune-related cytokine production. Moreover, it improved the gut barrier, ameliorated the disorder of gut microbiota, and upregulated the levels of SCFAs. More importantly, the AL group, LP group, and ALLP group showed different regulatory effects on the abundance of Bifidobacterium and Lactobacillus due to the presence of lactulose and L. plantarum. These findings elucidate that the combination of L-arabinose, lactulose, and L. plantarum constitutes a new synbiotic combination to control obesity by modulating glucolipid metabolism, immunomodulatory activity, inflammation, gut barrier, gut microbiota and production of SCFAs.


Subject(s)
Arabinose , Diet, High-Fat , Gastrointestinal Microbiome , Lactobacillus plantarum , Lactulose , Mice, Inbred C57BL , Obesity , Animals , Obesity/metabolism , Arabinose/pharmacology , Mice , Lactulose/pharmacology , Male , Gastrointestinal Microbiome/drug effects , Probiotics/pharmacology , Probiotics/administration & dosage , Insulin Resistance
3.
Cell Death Discov ; 9(1): 306, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37607902

ABSTRACT

Endometriosis is strongly associated with infertility. Several mechanisms have been reported in an attempt to elucidate the pathophysiological effects that lead to reduced fertility in women with endometriosis. However, the mechanisms by which endometriosis affects fertility have not been fully elucidated. Ferroptosis is a novel form of nonapoptotic cell death that is characterized by iron-dependent lipid peroxidation membrane damage. In past reports, elevated iron levels in ectopic lesions, peritoneal fluid and follicular fluid have been reported in patients with endometriosis. The high-iron environment is closely associated with ferroptosis, which appears to exhibit a double-edged effect on endometriosis. Ferroptosis can cause damage to ovarian granulosa cells, oocytes, and embryos, leading to endometriosis-related infertility. This article summarizes the main pathways and regulatory mechanisms of ferroptosis and explores the possible mechanisms of the formation of an iron-overloaded environment in endometriotic ectopic lesions, peritoneal fluid and follicular fluid. Finally, we reviewed recent studies on the main and potential mechanisms of ferroptosis in endometriosis and endometriosis-related infertility.

4.
Foods ; 11(21)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36359937

ABSTRACT

Dietary tannic acid, as a natural polyphenolic, has many important biological activities. This study aimed to investigate the effect of dietary tannic acid on obesity and gut microbiota in mice with a high-fat diet. Male C57BL/6J mice fed a high-fat diet were treated with dietary tannic acid for eight weeks. Results showed that dietary tannic acid reduced the body weight gain, regulated glycolipid metabolism, improved the insulin resistance, and attenuated the liver oxidative stress in high-fat diet-fed mice. Moreover, both dietary tannic acid intervention groups repaired the gut barrier damage caused by a high-fat diet, especially in the 50 mg/kg/d dietary tannic acid intervention group. Interestingly, the effect of dietary tannic acid on serum endotoxin lipopolysaccharide (LPS) content was correlated with the abundance of the LPS-producing microbiota. In addition, dietary tannic acid altered the abundance of obesity-related gut microbiota (Firmicutes, Bacteroidetes, Bacteroides, Alistipes, and Odoribacter) in the 150 mg/kg/d dietary tannic acid intervention group, while it was not effective in the 50 mg/kg/d dietary tannic acid intervention group. These findings suggested the potential effect of dietary tannic acid for the prevention and control of obesity.

5.
Food Sci Nutr ; 9(10): 5800-5808, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646547

ABSTRACT

In this study, konjac glucomannan, κ-carrageenan, and tannic acid were selected to study the effects of different combinations on the in vitro digestibility and physicochemical properties of wheat starch. Results showed that the addition of konjac glucomannan, κ-carrageenan, and tannic acid could decrease the digestion of starch and increase the content of resistant starch. Besides, the two polysaccharides weakened the extent of tannic acid on starch digestion. Moreover, although the two polysaccharides had different effects on the in vitro digestion of starch, they had no significant increase in the content of resistant starch. DSC and XRD results demonstrated that the polysaccharides and tannic acid showed synergistic effects on the rebuilding of starch microstructure. FTIR results further manifested that κ-carrageenan and konjac glucomannan could significantly increase the strength of hydrogen bonds in starch. At the same time, the addition of tannic acid would weaken the molecular interaction between polysaccharides and starch. SEM and CLSM results showed that tannic acid added to the polysaccharide-starch mixture not only interacted with starch but also influenced the structure of polysaccharide gel.

SELECTION OF CITATIONS
SEARCH DETAIL
...