Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(1): 110-116, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38150391

ABSTRACT

BiVO4 is a promising photoanode for photoelectrochemical (PEC) water splitting but suffers from high charge carrier recombination and sluggish surface water oxidation kinetics that limit its efficiency. In this work, a model of sulfur-incorporated FeOOH cocatalyst-loaded BiVO4 was constructed. The composite photoanode (BiVO4/S-FeOOH) demonstrates an enhanced photocurrent density of 3.58 mA cm-2, which is 3.7 times higher than that of the pristine BiVO4 photoanode. However, the current explanations for the generation of enhanced photocurrent signals through the incorporation of elements and cocatalyst loading remain unclear and require further in-depth research. In this work, the hole transfer kinetics were investigated by using a scanning photoelectrochemical microscope (SPECM). The results suggest that the incorporation of sulfur can effectively improve the charge transfer capacity of FeOOH. Moreover, the oxygen evolution reaction model provides evidence that S-doping can induce a "fast" surface catalytic reaction at the cocatalyst/solution interface. The work not only presents a promising approach for designing a highly efficient photoanode but also offers valuable insights into the role of element doping in the PEC water-splitting system.

2.
J Hazard Mater ; 441: 129888, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36084466

ABSTRACT

Under the background of carbon dioxide emission reduction, how to realize the treatment and the high value-added conversion of typical olefin volatile organic compounds (olefin-VOCs), such as styrene, is a big challenge. In this contribution, the ceria-supported coinage metal catalysts (M/CeO2, M = Au, Ag, and Cu) are successfully synthesized by a dry mechanochemical method, and their catalytic performance for styrene-VOC epoxidation with tert-butyl hydrogen peroxide (TBHP) as an oxidant to prepare high-value styrene oxide (SO) is investigated. The oxygen vacancies of ceria play a key role in the anchoring of metal nanoparticles. After ball milling, Au(III) is partially reduced and coexists on ceria in two valence states (Au3+ and Au0), and the reactive oxygen species of the as-prepared catalyst are enhanced. The catalytic behaviors, including solvents effect, substrate concentration, oxidant ratio, catalyst dosage, reaction time, and temperature, are systematically investigated. Au/CeO2 exhibits good styrene epoxidation performance with a total styrene conversion of 94% and a SO yield of 63%, along with good reusability and substrate scalability. Thermodynamics and kinetics show that Au/CeO2 was more favorable for styrene epoxidation and this reaction is dominated by the rate of intrinsic chemical reactions on the surface of the catalyst. Based on experimental discussions and a set of characterizations (XPS, XRD, in-situ FT-IR, ESR, ESI-HSMS, etc.), the mechanism is revealed as the synergistic catalysis between the reactive oxygen species of Au/CeO2 and the peroxide radicals generated by the homolysis of TBHP.

3.
Chem Sci ; 13(33): 9560-9568, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36091900

ABSTRACT

Developing highly efficient catalytic protocols for C-sp(3)-H bond aerobic oxidation under mild conditions is a long-desired goal of chemists. Inspired by nature, a biomimetic approach for the aerobic oxidation of C-sp(3)-H by galactose oxidase model compound CuIIL and NHPI (N-hydroxyphthalimide) was developed. The CuIIL-NHPI system exhibited excellent performance in the oxidation of C-sp(3)-H bonds to ketones, especially for light alkanes. The biomimetic catalytic protocol had a broad substrate scope. Mechanistic studies revealed that the CuI-radical intermediate species generated from the intramolecular redox process of CuIILH2 was critical for O2 activation. Kinetic experiments showed that the activation of NHPI was the rate-determining step. Furthermore, activation of NHPI in the CuIIL-NHPI system was demonstrated by time-resolved EPR results. The persistent PINO (phthalimide-N-oxyl) radical mechanism for the aerobic oxidation of C-sp(3)-H bond was demonstrated.

4.
Anal Chem ; 94(23): 8539-8546, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35658420

ABSTRACT

Photoelectrochemical (PEC) water splitting technology is a promising strategy toward producing sustainable hydrogen fuel. However, it is an essential bottleneck to reduce severe charge recombination for the improvement of PEC performance. Construction of heterojunction systems, such as Z-scheme and type II heterojunctions, could efficiently boost charge separation, whereas the mechanism of charge separation is still ambiguous. We describe herein a charge transfer system designed with Bi2WO6/Bi2S3 (BWO/BS) as a prototype. In this system, Au nanoparticles act as charge relays to engineer a charge transfer pathway, and the obtained BWO/Au/BS photoanode achieves a remarkable photocurrent density of 0.094 mA cm-2 at 1.23 V versus reversible hydrogen electrode (vs RHE), over approximately 1.2 and 2.3 times larger than those of BWO/BS/Au and BWO, exhibiting long-term photostability. More importantly, scanning photoelectrochemical microscopy (SPECM) and intensity-modulated photocurrent spectroscopy (IMPS) studies are performed to in situ-capture the photogenerated hole during the PEC process. Operando analysis reveals that the Z-scheme BWO/Au/BS system (1.33 × 10-2 cm s-1) exhibits higher charge transfer kinetics compared to the type II BWO/BS/Au heterostructure (0.85 × 10-2 cm s-1) while efficiently suppressing charge recombination for optimized PEC activity. Note that this smart strategy can also be extended to other semiconductor-based photoanodes such as BiVO4. Our study offers an effective pathway for the rational design of highly efficient charge separation for solar conversion based on water splitting.

5.
Small ; 18(20): e2107938, 2022 05.
Article in English | MEDLINE | ID: mdl-35434918

ABSTRACT

Semiconductor/co-catalyst coupling is considered as a promising strategy to enhance the photoelectrochemical (PEC) conversion efficiency. Unfortunately, this model system is faced with a serious interface recombination problem, which limits the further improvement of PEC performances. Here, a FeNiOOH co-catalyst with abundant oxygen vacancies on BiVO4 is fabricated through simple and economical NaBH4 reduction to accelerate hole transfer and achieve efficient electron-hole pair separation. The photocurrent of the BV (BiVO4 )/Vo-FeNiOOH system is more than four times that of pure BV. Importantly, the charge transfer kinetics and charge carrier recombination process are studied by scanning photoelectrochemical microscopy and intensity modulated photocurrent spectroscopy in detail. In addition, the oxygen vacancy regulation proposed is also applied successfully to other semiconductors (Fe2 O3 ), demonstrating the applicability of this strategy.


Subject(s)
Oxygen , Semiconductors , Catalysis , Oxygen/chemistry
6.
J Colloid Interface Sci ; 615: 318-326, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35144232

ABSTRACT

Photoelectrochemical (PEC) water splitting is an attractive strategy to convert and store of intermittent solar power into fuel energy. However, the detrimental charge recombination of photogenerated electrons and holes severely limits its efficiency. Despite electrocatalyst loading can obviously improve the PEC conversion efficiency, current systems still suffer from high recombination owing to the surface states. Herein, an interface "repairing" strategy is proposed to suppress the recombination at the semiconductor/electrocatalyst interface. NiOx layer acts as an interfacial repairing layer to efficiently extract photogenerated charge carriers and eliminate the surface states via high hole-transfer kinetics rather than as a traditional electrocatalyst. As expected, the resulting repaired system yields an impressive photocurrent density of 4.58 mA cm-2 at 1.23 V (vs. RHE), corresponding to a more than three-fold increase compared to BiVO4 (1.40 mA cm-2). Our work offers an appealing maneuver to improve the water oxidation performance for the semiconductor/electrocatalyst coupling system.

7.
J Colloid Interface Sci ; 611: 564-577, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34971967

ABSTRACT

Activation of inert propylene to produce propylene oxide (PO) is critical, but still faces some challenges in realizing higher PO selectivity and productivity. Herein, a temperature-controlled phase transfer catalyst (MoOO·DMF) is prepared for the liquid-phase epoxidation of propylene with tert-butyl hydroperoxide (TBHP) as oxidant, which exhibit the selectivity of 90.6% and the productivity of 1286.42·h-1 for PO (catalyst/propylene = 0.77 mol‰). Some experimental factors (solvent types, reaction temperature, contact time, the dosage of catalyst, TBHP and substrate) were investigated, and the reaction kinetics and thermodynamics are discussed. MoOO·DMF has the characteristic of both homogeneous and heterogeneous catalysts, which can be dissolved in the solvent at higher temperatures and separated from the solvent after reaction by lowering the temperature. Importantly, MoOO·DMF has a wonderful epoxidation performance for many olefins (e.g., light olefins, linear α-olefins, cyclic olefins and others). The mechanisms are proved by in-situ FT-IR, ESR and HRMS spectrum to be the selective oxygen transfer from tert-butyl peroxide radical and the MoOO bridge in MoOO·DMF to propylene. Density functional theory (DFT) calculations show that the MoOO bridge in catalyst is the key role for the activation of both the OH bond in TBHP and the CC bond in propylene, thus enhanced the epoxidation of propylene.


Subject(s)
Alkenes , Oxygen , Catalysis , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...