Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
J Med Microbiol ; 70(3)2021 Mar.
Article in English | MEDLINE | ID: mdl-33591245

ABSTRACT

Introduction. Shigella sonnei, the cause of bacillary dysentery, belongs to Gram-negative enteropathogenic bacteria. S. sonnei contains a 210 kb virulence plasmid that encodes an O-antigen gene cluster of LPSs. However, this virulence plasmid is frequently lost during replication. It is well-documented that after losing the O-antigen and becoming rough strains, the Gram-negative bacteria may express an LPS core on its surface. Previous studies have suggested that by using the LPS core, Gram-negative bacteria can interact with several C-type lectin receptors that are expressed on antigen-presenting cells (APCs).Hypothesis/Gap Statement. S. sonnei by losing the virulence plasmid may hijack APCs via the interactions of LPS-CD209/CD207.Aim. This study aimed to investigate if the S. sonnei rough strain, by losing the virulence plasmid, interacted with APCs that express C-type lectins of human CD207, human CD209a and mouse CD209b.Methodology. SDS-PAGE silver staining was used to examine the O-antigen expression of S. sonnei WT and its rough strain. Invasion assays and inhibition assays were used to examine the ability of S. sonnei WT and its rough strain to invade APCs and investigate whether CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Animal assays were used to observe the dissemination of S. sonnei.Results. S. sonnei did not express O-antigens after losing the virulence plasmid. The S. sonnei rough strain invades with APCs, including human dendritic cells (DCs) and mouse macrophages. CD209 and CD207 are receptors for phagocytosis of rough S. sonnei. Expression of the O-antigen reduces the ability of the S. sonnei rough strain to be disseminated to mesenteric lymph nodes and spleens.Conclusion. This work demonstrated that S. sonnei rough strains - by losing the virulence plasmid - invaded APCs through interactions with CD209 and CD207 receptors.


Subject(s)
Antigens, CD/immunology , Cell Adhesion Molecules/immunology , Dysentery, Bacillary/microbiology , Lectins, C-Type/immunology , Mannose-Binding Lectins/immunology , O Antigens , Plasmids , Receptors, Cell Surface/immunology , Shigella sonnei/pathogenicity , Virulence/genetics , Animals , CHO Cells , Cricetulus , Dendritic Cells/microbiology , Host-Pathogen Interactions , Humans , Macrophages/microbiology , Mice , O Antigens/genetics , O Antigens/metabolism , Shigella sonnei/genetics
2.
Infect Immun ; 87(1)2019 01.
Article in English | MEDLINE | ID: mdl-30348825

ABSTRACT

Yersinia pseudotuberculosis is a Gram-negative enteropathogen and causes gastrointestinal infections. It disseminates from gut to mesenteric lymph nodes (MLNs), spleen, and liver of infected humans and animals. Although the molecular mechanisms for dissemination and infection are unclear, many Gram-negative enteropathogens presumably invade the small intestine via Peyer's patches to initiate dissemination. In this study, we demonstrate that Y. pseudotuberculosis utilizes its lipopolysaccharide (LPS) core to interact with CD209 receptors, leading to invasion of human dendritic cells (DCs) and murine macrophages. These Y. pseudotuberculosis-CD209 interactions result in bacterial dissemination to MLNs, spleens, and livers of both wild-type and Peyer's patch-deficient mice. The blocking of the Y. pseudotuberculosis-CD209 interactions by expression of O-antigen and with oligosaccharides reduces infectivity. Based on the well-documented studies in which HIV-CD209 interaction leads to viral dissemination, we therefore propose an infection route for Y. pseudotuberculosis where this pathogen, after penetrating the intestinal mucosal membrane, hijacks the Y. pseudotuberculosis-CD209 interaction antigen-presenting cells to reach their target destinations, MLNs, spleens, and livers.


Subject(s)
Cell Adhesion Molecules/metabolism , Dendritic Cells/microbiology , Endocytosis , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Lipopolysaccharides/metabolism , Macrophages/microbiology , Receptors, Cell Surface/metabolism , Yersinia pseudotuberculosis/pathogenicity , Animals , Bacterial Adhesion , Cells, Cultured , Disease Models, Animal , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Binding , Yersinia Infections/microbiology , Yersinia Infections/pathology , Yersinia Infections/physiopathology
3.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 344-349, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27376801

ABSTRACT

Lipooligosacharide (LOS) of Neisseria gonorrhoeae (gonococci, GC) is involved in the interaction of GC with host cells. Deletion of the alpha-oligosaccharide (alpha-OS) moiety of LOS (lgtF mutant) significantly impairs invasion of GC into epithelial cell lines. GC opacity (Opa) proteins, such as OpaI, mediate phagocytosis and stimulate chemiluminescence responses in neutrophils in part through interaction with members of the carcinoembryonic antigen (CEA) family, which includes CEACAM3 (CD66d), a human neutrophil specific receptor for phagocytosis of bacteria. In the present work, we examined the effects of OpaI-expressing lgtF mutant on phagocytosis by HeLa-CEACAM3 cells and chemiluminescence responses in neutrophils. The results showed that lgtF mutant even expressing OpaI completely lost the ability to promote either phagocytosis mediated by CEACAM3 interaction in HeLa cells or chemiluminescence responses in neutrophils. These data indicated that Opa proteins in the lgtF mutant, which might result from the conformational change, cannot be functional.


Subject(s)
Antigens, Bacterial/chemistry , Carcinoembryonic Antigen/immunology , Lipopolysaccharides/chemistry , Neisseria gonorrhoeae/metabolism , Neutrophils/immunology , Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Carbohydrate Sequence , Carcinoembryonic Antigen/genetics , Gene Expression Regulation , HeLa Cells , Host-Pathogen Interactions , Humans , Lipopolysaccharides/immunology , Luminescent Measurements , Mutation , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/pathogenicity , Neutrophils/microbiology , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...