Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 459(1-2): 141-150, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31297660

ABSTRACT

Migration and invasion are important characteristics of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs), which are involved in joint damage and contribute to rheumatoid arthritis (RA) pathology. However, the underlying mechanisms remain unclear. Because epithelial-mesenchymal transition (EMT) is a key mechanism related to migration and invasion in cancer cells, we investigated the relationship between EMT and RA-FLSs and explored whether the transforming growth factor ß1 (TGF-ß1)/Smad signaling pathway is involved. In vivo, fibroblast-like synoviocytes (FLSs) were isolated from the synovium of RA or osteoarthritis (OA) patients and cultured for 4-8 passages. EMT markers were detected by immunofluorescence and Western blotting. RA-FLSs were treated with TGF-ß1 or Smad2/3 small interfering RNA (siRNA), EMT markers were detected, and migration and invasion were assessed by Transwell assays. EMT markers could be detected in FLSs; when compared with osteoarthritis fibroblast-like synoviocytes (OA-FLSs), E-cadherin and vimentin decreased, while N-cadherin and α-smooth muscle actin (α-SMA) increased in RA-FLSs. Furthermore, TGF-ß1 enhanced migration and invasion by inducing EMT via activating Smad2/3 in RA-FLSs. Phosphorylation of Smad2/3 was accompanied by degradation of Smad3. Silencing Smad2/3 blocked EMT and inhibited the migration and invasion induced by TGF-ß1. Matrix metalloproteinase 9 (MMP9) and vimentin were not affected when cells were treated with TGF-ß1 or Smad2/3 siRNA. The TGF-ß1/Smad signaling pathway is involved in EMT and contributes to migration and invasion in RA-FLSs. Interestingly, vimentin decreased in RA-FLSs, but there is no correlation between vimentin and TGF-ß1/Smad signaling pathway. Thus, further research on vimentin should be conducted.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cell Movement , Fibroblasts/metabolism , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Synoviocytes/metabolism , Transforming Growth Factor beta1/metabolism , Arthritis, Rheumatoid/pathology , Cells, Cultured , Female , Fibroblasts/pathology , Humans , Male , Matrix Metalloproteinase 9/metabolism , Synoviocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...