Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neuropsychopharmacol ; 24(11): 894-906, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34338765

ABSTRACT

BACKGROUND: HIV-associated neurocognitive disorder (HAND) is commonly observed in persons living with HIV (PWH) and is characterized by cognitive deficits implicating disruptions of fronto-striatal neurocircuitry. Such circuitry is also susceptible to alteration by cannabis and other drugs of abuse. PWH use cannabis at much higher rates than the general population, thus prioritizing the characterization of any interactions between HIV and cannabinoids on cognitively relevant systems. Prepulse inhibition (PPI) of the startle response, the process by which the motor response to a startling stimulus is attenuated by perception of a preceding non-startling stimulus, is an operational assay of fronto-striatal circuit integrity that is translatable across species. PPI is reduced in PWH. The HIV transgenic (HIVtg) rat model of HIV infection mimics numerous aspects of HAND, although to date the PPI deficit observed in PWH has yet to be fully recreated in animals. METHODS: PPI was measured in male and female HIVtg rats and wild-type controls following acute, nonconcurrent treatment with the primary constituents of cannabis: Δ 9-tetrahydrocannabinol (THC; 1 and 3 mg/kg, s.c.) and cannabidiol (1, 10, and 30 mg/kg, i.p.). RESULTS: HIVtg rats exhibited a significant PPI deficit relative to wild-type controls. THC reduced PPI in controls but not HIVtg rats. Cannabidiol exerted only minor, genotype-independent effects on PPI. CONCLUSIONS: HIVtg rats exhibit a relative insensitivity to the deleterious effects of THC on the fronto-striatal function reflected by PPI, which may partially explain the higher rates of cannabis use among PWH.


Subject(s)
Cannabinoids/pharmacology , HIV Infections/physiopathology , Sensory Gating/drug effects , Acoustic Stimulation , Animals , Cannabidiol/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Dronabinol/pharmacology , Female , Hallucinogens/pharmacology , Male , Prepulse Inhibition/drug effects , Rats , Rats, Transgenic , Reflex, Startle/drug effects
2.
Cogn Affect Behav Neurosci ; 21(6): 1207-1221, 2021 12.
Article in English | MEDLINE | ID: mdl-34312815

ABSTRACT

The HIV transgenic (HIVtg) rat is a commonly used animal model of chronic HIV infection that exhibits a wide range of cognitive deficits. To date, relatively little work has been conducted on these rats' capacity for reversal learning, an assay of executive function and cognitive flexibility used in humans. The present study sought to determine the impact of HIV genotype on probabilistic reversal learning, effortful motivation, and spontaneous locomotion/exploration in rats. Male (n = 8) and female (n = 8) HIVtg rats and wildtype (WT) controls were utilized. Cognitive flexibility was assessed via the Probabilistic Reversal Learning Task (PRLT), which reinforced responses to two stimuli on differential probabilistic schedules that periodically reversed. Effortful motivation and locomotor/exploratory behavior were assessed via the Progressive Ratio Breakpoint Task (PRBT) and the Behavioral Pattern Monitor (BPM), respectively. Regardless of sex, HIVtg rats required fewer trials to ascertain initial PRLT reward schedules than WT rats, and completed the same number of reversals. Secondary behaviors suggested that HIVtg PRLT performance was facilitated by a speed-accuracy tradeoff strategy. No main or interactive effects of genotype were observed in the PRBT or BPM. Relative to WT controls, HIVtg rats exhibited superior probabilistic reinforcement learning. Reversal learning was unaffected by HIV genotype, as was effortful motivation and exploratory behavior. These findings contrast with previous characterizations of the HIVtg rat, thus indicating a nuanced cognitive profile that is dependent upon such task specifications as within- versus between-session assessment and probabilistic versus deterministic reward schedules.


Subject(s)
HIV Infections , Reversal Learning , Animals , Female , HIV Infections/genetics , Male , Rats , Rats, Transgenic , Reinforcement, Psychology , Reward
3.
Neuropharmacology ; 150: 15-26, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30844406

ABSTRACT

Deficits in cognition and motivation are common and debilitating aspects of psychiatric disorders, yet still go largely untreated. The neuropeptide oxytocin (OT) is a potential novel therapeutic for deficits in social cognition and motivation in psychiatric patients. However, the effects of OT on clinically relevant domains of non-social cognition and motivation remain under studied. The present study investigated the effects of acute and chronic (21-day) administration of subcutaneous OT (0.04, 0.2, and 1 mg/kg) in cross-species translatable operant paradigms of reward learning and effortful motivation in male and female Brown Norway (BN) rats (n = 8-10/group). Reward learning was assessed using the probabilistic reversal learning task (PRLT) and effortful motivation was measured using the progressive ratio breakpoint task (PRBT). As predicted, BN rats exhibited baseline deficits in the detection of reversals of reward contingency in the PRLT relative to Long Evans (LE) rats. The two strains performed equally in the PRBT. Thirty minutes after a single OT injection (1 mg/kg), measures of both initial probabilistic learning (trials to first criterion) and subsequent reversal learning (contingency switches) were significantly improved to levels comparable with LE rats. The OT effect on switches persisted in male, but not female, BN rats 30 min, 24 h, and 6 days after long-term OT administration, suggesting the induction of neuroplastic changes. OT did not affect effortful motivation at any time-point. The beneficial effects of OT on reward learning in the absence of increased effortful motivation support the development of OT as a novel therapeutic to improve cognitive functioning.


Subject(s)
Conditioning, Operant/drug effects , Motivation/drug effects , Oxytocin/pharmacology , Reversal Learning/drug effects , Animals , Cognition/drug effects , Female , Male , Rats , Rats, Inbred BN , Reward
SELECTION OF CITATIONS
SEARCH DETAIL
...