Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6640): eadd6220, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36862765

ABSTRACT

Individual free fatty acids (FAs) play important roles in metabolic homeostasis, many through engagement with more than 40G protein-coupled receptors. Searching for receptors to sense beneficial omega-3 FAs of fish oil enabled the identification of GPR120, which is involved in a spectrum of metabolic diseases. Here, we report six cryo-electron microscopy structures of GPR120 in complex with FA hormones or TUG891 and Gi or Giq trimers. Aromatic residues inside the GPR120 ligand pocket were responsible for recognizing different double-bond positions of these FAs and connect ligand recognition to distinct effector coupling. We also investigated synthetic ligand selectivity and the structural basis of missense single-nucleotide polymorphisms. We reveal how GPR120 differentiates rigid double bonds and flexible single bonds. The knowledge gleaned here may facilitate rational drug design targeting to GPR120.


Subject(s)
Drug Design , Fatty Acids, Omega-3 , Receptors, G-Protein-Coupled , Cryoelectron Microscopy , Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Humans , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Protein Conformation , Eicosapentaenoic Acid/chemistry , Eicosapentaenoic Acid/metabolism , Mutation, Missense , Polymorphism, Single Nucleotide
2.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33571432

ABSTRACT

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Subject(s)
GTP-Binding Protein alpha Subunits, Gs/metabolism , Receptors, Dopamine D1/metabolism , Signal Transduction , Allosteric Regulation , Allosteric Site , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Catechols/metabolism , Cryoelectron Microscopy , Fenoldopam/chemistry , Fenoldopam/pharmacology , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/ultrastructure , HEK293 Cells , Humans , Ligands , Models, Molecular , Protein Multimerization , Receptors, Dopamine D1/chemistry , Receptors, Dopamine D1/ultrastructure , Receptors, Dopamine D2/metabolism , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...