Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Immunol ; 212(10): 1589-1601, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38558134

ABSTRACT

Tumor-targeting Abs can be used to initiate an antitumor immune program, which appears essential to achieve a long-term durable clinical response to cancer. We previously identified an anti-complement factor H (CFH) autoantibody associated with patients with early-stage non-small cell lung cancer. We cloned from their peripheral B cells an mAb, GT103, that specifically recognizes CFH on tumor cells. Although the underlying mechanisms are not well defined, GT103 targets a conformationally distinct CFH epitope that is created when CFH is associated with tumor cells, kills tumor cells in vitro, and has potent antitumor activity in vivo. In the effort to better understand how an Ab targeting a tumor epitope can promote an effective antitumor immune response, we used the syngeneic CMT167 lung tumor C57BL/6 mouse model, and we found that murinized GT103 (mGT103) activates complement and enhances antitumor immunity through multiple pathways. It creates a favorable tumor microenvironment by decreasing immunosuppressive regulatory T cells and myeloid-derived suppressor cells, enhances Ag-specific effector T cells, and has an additive antitumor effect with anti-PD-L1 mAb. Furthermore, the immune landscape of tumors from early-stage patients expressing the anti-CFH autoantibody is associated with an immunologically active tumor microenvironment. More broadly, our results using an mAb cloned from autoantibody-expressing B cells provides novel, to our knowledge, mechanistic insights into how a tumor-specific, complement-activating Ab can generate an immune program to kill tumor cells and inhibit tumor growth.


Subject(s)
Complement Activation , Mice, Inbred C57BL , Animals , Mice , Humans , Complement Activation/immunology , Cell Line, Tumor , Complement Factor H/immunology , Tumor Microenvironment/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Autoantibodies/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Female , T-Lymphocytes, Regulatory/immunology
2.
Front Cell Dev Biol ; 12: 1302490, 2024.
Article in English | MEDLINE | ID: mdl-38389705

ABSTRACT

The elimination of cancer cells critically depends on the immune system. However, cancers have evolved a variety of defense mechanisms to evade immune monitoring, leading to tumor progression. Complement factor H (CFH), predominately known for its function in inhibiting the alternative pathway of the complement system, has recently been identified as an important innate immunological checkpoint in cancer. CFH-mediated immunosuppression enhances tumor cells' ability to avoid immune recognition and produce an immunosuppressive tumor microenvironment. This review explores the molecular underpinnings, interactions with immune cells, clinical consequences, and therapeutic possibilities of CFH as an innate immune checkpoint in cancer control. The difficulties and opportunities of using CFH as a target in cancer immunotherapy are also explored.

3.
Breast Cancer Res Treat ; 204(1): 89-105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38066250

ABSTRACT

PURPOSE: To investigate potential differences in pathological complete response (pCR) rates and overall survival (OS) between HER2-low and HER2-zero patients with early-stage hormone receptor (HR)-positive and triple-negative breast cancer (TNBC), in the neoadjuvant chemotherapy setting. METHODS: We identified early-stage invasive HER2-negative BC patients who received neoadjuvant chemotherapy diagnosed between 2010 and 2018 in the National Cancer Database. HER2-low was defined by immunohistochemistry (IHC) 1+ or 2+ with negative in situ hybridization, and HER2-zero by IHC0. All the methods were applied separately in the HR-positive and TNBC cohorts. Logistic regression was used to estimate the association of HER2 status with pCR (i.e. ypT0/Tis and ypN0). Kaplan-Meier method and Cox proportional hazards model were applied to estimate the association of HER2 status with OS. Inverse probability weighting and/or multivariable regression were applied to all analyses. RESULTS: For HR-positive patients, 70.9% (n = 17,934) were HER2-low, whereas 51.1% (n = 10,238) of TNBC patients were HER2-low. For both HR-positive and TNBC cohorts, HER2-low status was significantly associated with lower pCR rates [HR-positive: 5.0% vs. 6.7%; weighted odds ratio (OR) = 0.81 (95% CI: 0.72-0.91), p < 0.001; TNBC: 21.6% vs. 24.4%; weighted OR = 0.91 (95% CI: 0.85-0.98), p = 0.007] and improved OS [HR-positive: weighted hazard ratio = 0.85 (95% CI: 0.79-0.91), p < 0.001; TNBC: weighted hazard ratio = 0.91 (95% CI: 0.86-0.96), p < 0.001]. HER2-low status was associated with favorable OS among patients not achieving pCR [HR-positive: adjusted hazard ratio = 0.83 (95% CI: 0.77-0.89), p < 0.001; TNBC: adjusted hazard ratio = 0.88 (95% CI 0.83-0.94), p < 0.001], while no significant difference in OS was observed in patients who achieved pCR [HR-positive: adjusted hazard ratio = 1.00 (95% CI: 0.61-1.63), p > 0.99; TNBC: adjusted hazard ratio = 1.11 (95% CI: 0.85-1.45), p = 0.44]. CONCLUSION: In both early-stage HR-positive and TNBC patients, HER2-low status was associated with lower pCR rates. HER2-zero status might be considered an adverse prognostic factor for OS in patients not achieving pCR.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Neoadjuvant Therapy/adverse effects , Proportional Hazards Models , Receptor, ErbB-2/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Prognosis
4.
Int J Mol Sci ; 24(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139148

ABSTRACT

Bcl2l1 (Bcl-XL) belongs to the Bcl-2 family, Bcl2 and Bcl2-XL are major anti-apoptotic proteins, and the apoptosis of osteoblasts is a key event for bone homeostasis. As the functions of Bcl2l1 in osteoblasts and bone homeostasis remain unclear, we generated osteoblast-specific Bcl2l1-deficient (Bcl2l1fl/flCre) mice using 2.3-kb Col1a1 Cre. Trabecular bone volume and the trabecular number were lower in Bcl2l1fl/flCre mice of both sexes than in Bcl2l1fl/fl mice. In bone histomorphometric analysis, osteoclast parameters were increased in Bcl2l1fl/flCre mice, whereas osteoblast parameters and the bone formation rate were similar to those in Bcl2l1fl/fl mice. TUNEL-positive osteoblastic cells and serum TRAP5b levels were increased in Bcl2l1fl/flCre mice. The deletion of Bcl2l1 in osteoblasts induced Tnfsf11 expression, whereas the overexpression of Bcl-XL had no effect. In a co-culture of Bcl2l1-deficient primary osteoblasts and wild-type bone-marrow-derived monocyte/macrophage lineage cells, the numbers of multinucleated TRAP-positive cells and resorption pits increased. Furthermore, serum deprivation or the deletion of Bcl2l1 in primary osteoblasts increased apoptosis and ATP levels in the medium. Therefore, the reduction in trabecular bone in Bcl2l1fl/flCre mice may be due to enhanced bone resorption through osteoblast apoptosis and the release of ATP from apoptotic osteoblasts, and Bcl2l1 may inhibit bone resorption by preventing osteoblast apoptosis.


Subject(s)
Bone Resorption , Osteogenesis , Animals , Female , Male , Mice , Adenosine Triphosphate/metabolism , Apoptosis/genetics , bcl-X Protein/genetics , bcl-X Protein/metabolism , Bone Resorption/genetics , Bone Resorption/metabolism , Cancellous Bone/metabolism , Cell Differentiation , Osteoblasts/metabolism , Osteoclasts/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
5.
J Pharm Anal ; 13(6): 616-624, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37440907

ABSTRACT

Glioblastoma (GBM) is a lethal cancer with limited therapeutic options. Dendritic cell (DC)-based cancer vaccines provide a promising approach for GBM treatment. Clinical studies suggest that other immunotherapeutic agents may be combined with DC vaccines to further enhance antitumor activity. Here, we report a GBM case with combination immunotherapy consisting of DC vaccines, anti-programmed death-1 (anti-PD-1) and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy, and the patient remained disease-free for 69 months. The patient received DC vaccines loaded with multiple forms of tumor antigens, including mRNA-tumor associated antigens (TAA), mRNA-neoantigens, and hypochlorous acid (HOCl)-oxidized tumor lysates. Furthermore, mRNA-TAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histocompatibility complex (MHC) class I and II antigen presentation. The treatment consisted of 42 DC cancer vaccine infusions, 26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions. The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells. No immunotherapy-related adverse events were observed during the treatment. Robust antitumor CD4+ and CD8+ T-cell responses were detected. The patient remains free of disease progression. This is the first case report on the combination of the above three agents to treat glioblastoma patients. Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient. A large-scale trial to validate these findings is warranted.

6.
Mol Cancer Ther ; 22(6): 778-789, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36995981

ABSTRACT

Development of novel therapeutic antibodies that not only kill tumor cells but modulate the adaptive immune response has the potential to produce long term anticancer immunity and a durable clinical response. We previously reported the discovery of anti-complement factor H (CFH) autoantibodies in patients with lung cancer that were associated with early-stage disease and exceptional outcomes. The human mAb GT103, produced from a single CFH autoantibody-expressing B cell of a patient with lung cancer, recognizes a conformationally distinct epitope on tumor cells, kills tumor cells, and inhibits tumor growth in animal studies. Recent experiments have shown that GT103 restructures the tumor microenvironment and initiates a robust antitumoral adaptive immune response. The current study further elucidates several mechanisms by which GT103 kills tumor cells and drives the immune program. Here we show GT103 has specificity for tumor cells without binding to native soluble CFH or normal tissues. GT103 causes complement C3 split product deposition on tumor cells in vitro and in vivo, triggers antibody-dependent cellular phagocytosis, and increases translocation of the danger-associated molecular pattern molecule calreticulin to the plasma membrane. We also demonstrate that GT103 causes B-cell activation in vitro and in vivo, and that GT103 antitumor activity in vivo is B-cell dependent. The complex mechanism of GT103, a tumor-specific antibody that kills tumor cells and stimulates an immune response, supports further development of this human-derived antibody as a novel therapeutic option for patients with lung cancer.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Animals , Humans , Complement Factor H/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Lung Neoplasms/pathology , Autoantibodies/therapeutic use , Antineoplastic Agents/therapeutic use , Tumor Microenvironment
7.
J Invest Dermatol ; 143(5): 699-710.e10, 2023 05.
Article in English | MEDLINE | ID: mdl-36528128

ABSTRACT

Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.


Subject(s)
Fibroblasts , Scleroderma, Systemic , Mice , Animals , Humans , Fibroblasts/metabolism , Scleroderma, Systemic/pathology , Skin/pathology , Extracellular Matrix Proteins/metabolism , Fibrosis , Mice, Transgenic , Disease Models, Animal , Neoplasm Proteins/metabolism
8.
Cell Rep ; 40(12): 111390, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130502

ABSTRACT

Preservation of a small population of cancer stem cells (CSCs) within a heterogeneous carcinoma serves as a paradigm to understand how select cells in a tissue maintain their undifferentiated status. In both embryogenesis and cancer, Snail has been correlated with stemness, but the molecular underpinning of this phenomenon remains largely ill-defined. In models of cutaneous squamous cell carcinoma (cSCC), we discovered a non-epithelial-mesenchymal transition function for the transcription factor Snail in maintaining the stemness of epidermal keratinocytes. Snail-expressing cells secrete the matricellular protein Mindin, which functions in an autocrine fashion to activate a Src-STAT3 pathway to reinforce their stem/progenitor phenotype. This pathway is activated by the engagement of Mindin with the leukocyte-specific integrin, CD11b (ITGAM), which is also unexpectedly expressed by epidermal keratinocytes. Interestingly, disruption of this signaling module in human cSCC attenuates tumorigenesis, suggesting that targeting Mindin would be a promising therapeutic approach to hinder cancer recurrence.


Subject(s)
Carcinoma, Squamous Cell , Skin Neoplasms , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Epithelial Cells/metabolism , Extracellular Matrix Proteins , Humans , Integrins/metabolism , Neoplasm Proteins , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/metabolism , Skin Neoplasms/pathology , Snail Family Transcription Factors/metabolism
9.
Curr Res Immunol ; 3: 118-127, 2022.
Article in English | MEDLINE | ID: mdl-35676925

ABSTRACT

Immune-checkpoint inhibitor-based combination immunotherapy has become a first-line treatment for several major types of cancer including hepatocellular carcinoma (HCC), renal cell carcinoma, lung cancer, cervical cancer, and gastric cancer. Combination immunotherapy counters several immunosuppressive elements in the tumor microenvironment and activates multiple steps of the cancer-immunity cycle. The anti-PD-L1 antibody, atezolizumab, plus the anti-vascular endothelial growth factor antibody, bevacizumab, represents a promising class of combination immunotherapy. This combination has produced unprecedented clinical efficacy in unresectable HCC and become a landmark in HCC therapy. Advanced HCC patients treated with atezolizumab plus bevacizumab demonstrated impressive improvements in multiple clinical endpoints including overall survival, progress-free survival, objective response rate, and patient-reported quality of life when compared to current first-line treatment with sorafenib. However, atezolizumab plus bevacizumab first-line therapy has limitations. First, cancer patients falling into the criteria for the combination therapy may need to be further selected to reap benefits while avoiding some potential pitfalls. Second, the treatment regimen of atezolizumab plus bevacizumab at a fixed dose may require adjustment for optimal normalization of the tumor microenvironment to obtain maximum efficacy and reduce adverse events. Third, utilization of predictive biomarkers is urgently needed to guide the entire treatment process. Here we review the current status of clinically approved combination immunotherapies and the underlying immune mechanisms. We further provide a perspective analysis of the limitations for combination immunotherapies and potential approaches to overcome the limitations.

11.
Front Cell Dev Biol ; 9: 709398, 2021.
Article in English | MEDLINE | ID: mdl-34458267

ABSTRACT

Autophagy, a highly conserved intracellular process, has been identified as a novel mechanism regulating T lymphocyte homeostasis. Herein, we demonstrate that both starvation- and T cell receptor-mediated autophagy induction requires class I phosphatidylinositol-3 kinases to produce PI(3)P. In contrast, common gamma chain cytokines are suppressors of autophagy despite their ability to activate the PI3K pathway. T cells lacking the PI3KI regulatory subunits, p85 and p55, were almost completely unable to activate TCR-mediated autophagy and had concurrent defects in PI(3)P production. Additionally, T lymphocytes upregulate polyinositol phosphatases in response to autophagic stimuli, and the activity of the inositol phosphatases Inpp4 and SHIP are required for TCR-mediated autophagy induction. Addition of exogenous PI(3,4)P2 can supplement cellular PI(3)P and accelerate the outcome of activation-induced autophagy. TCR-mediated autophagy also requires internalization of the TCR complex, suggesting that this kinase/phosphatase activity is localized in internalized vesicles. Finally, HIV-induced bystander CD4+ T cell autophagy is dependent upon PI3KI. Overall, our data elucidate an important pathway linking TCR activation to autophagy, via induction of PI3KI activity and inositol phosphatase upregulation to produce PI(3)P.

12.
Cell Rep ; 35(1): 108946, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33826889

ABSTRACT

Although embryonic brain development and neurodegeneration have received considerable attention, the events that govern postnatal brain maturation are less understood. Here, we identify the miR-29 family to be strikingly induced during the late stages of brain maturation. Brain maturation is associated with a transient, postnatal period of de novo non-CG (CH) DNA methylation mediated by DNMT3A. We examine whether an important function of miR-29 during brain maturation is to restrict the period of CH methylation via its targeting of Dnmt3a. Deletion of miR-29 in the brain, or knockin mutations preventing miR-29 to specifically target Dnmt3a, result in increased DNMT3A expression, higher CH methylation, and repression of genes associated with neuronal activity and neuropsychiatric disorders. These mouse models also develop neurological deficits and premature lethality. Our results identify an essential role for miR-29 in restricting CH methylation in the brain and illustrate the importance of CH methylation regulation for normal brain maturation.


Subject(s)
Brain/growth & development , Brain/metabolism , DNA Methylation/genetics , MicroRNAs/metabolism , 3' Untranslated Regions/genetics , Animals , Animals, Newborn , Base Sequence , Behavior, Animal , DNA (Cytosine-5-)-Methyltransferases/metabolism , Down-Regulation/genetics , Gene Expression Regulation, Developmental , Mice, Inbred C57BL , MicroRNAs/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurons/metabolism , Neurons/pathology , Seizures/genetics , Seizures/pathology , Signal Transduction , Synapses/metabolism , Up-Regulation/genetics
14.
Cell Mol Immunol ; 18(1): 150-161, 2021 01.
Article in English | MEDLINE | ID: mdl-32066854

ABSTRACT

CD4+ and CD8+ T cells are dichotomous lineages in adaptive immunity. While conventionally viewed as distinct fates that are fixed after thymic development, accumulating evidence indicates that these two populations can exhibit significant lineage plasticity, particularly upon TCR-mediated activation. We define a novel CD4-CD8αß+ MHC II-recognizing population generated by lineage conversion from effector CD4+ T cells. CD4-CD8αß+ effector T cells downregulated the expression of T helper cell-associated costimulatory molecules and increased the expression of cytotoxic T lymphocyte-associated cytotoxic molecules. This shift in functional potential corresponded with a CD8+-lineage skewed transcriptional profile. TCRß repertoire sequencing and in vivo genetic lineage tracing in acutely infected wild-type mice demonstrated that CD4-CD8αß+ effector T cells arise from fundamental lineage reprogramming of bona fide effector CD4+ T cells. Impairing autophagy via functional deletion of the initiating kinase Vps34 or the downstream enzyme Atg7 enhanced the generation of this cell population. These findings suggest that effector CD4+ T cells can exhibit a previously unreported degree of skewing towards the CD8+ T cell lineage, which may point towards a novel direction for HIV vaccine design.


Subject(s)
Autophagy-Related Protein 7/physiology , CD4-Positive T-Lymphocytes/immunology , CD8 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Lineage , Class III Phosphatidylinositol 3-Kinases/physiology , Histocompatibility Antigens Class II/immunology , Animals , Cell Differentiation , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Cytotoxic/immunology
15.
Cell Death Differ ; 28(5): 1579-1592, 2021 05.
Article in English | MEDLINE | ID: mdl-33293647

ABSTRACT

The tendency of brain cells to undergo apoptosis in response to exogenous events varies across neural development, with apoptotic threshold dependent on proliferation state. Proliferative neural progenitors show a low threshold for apoptosis, while terminally differentiated neurons are relatively refractory. To define the mechanisms linking proliferation and apoptotic threshold, we examined the effect of conditionally deleting Bcl2l1, the gene that codes the antiapoptotic protein BCL-xL, in cerebellar granule neuron progenitors (CGNPs), and of co-deleting Bcl2l1 homologs, antiapoptotic Mcl-1, or pro-apoptotic Bax. We found that cerebella in conditional Bcl2l1-deleted (Bcl-xLcKO) mice were severely hypoplastic due to the increased apoptosis of CGNPs and their differentiated progeny, the cerebellar granule neurons (CGNs). Apoptosis was highest as Bcl-xLcKO CGNPs exited the cell cycle to initiate differentiation, with proliferating Bcl-xLcKO CGNPs relatively less affected. Despite the overall reduction in cerebellar growth, SHH-dependent proliferation was prolonged in Bcl-xLcKO mice, as more CGNPs remained proliferative in the second postnatal week. Co-deletion of Bax rescued the Bcl-xLcKO phenotype, while co-deletion of Mcl-1 enhanced the phenotype. These findings show that CGNPs require BCL-xL to regulate BAX-dependent apoptosis, and that this role can be partially compensated by MCL-1. Our data further show that BCL-xL expression regulates MCL-1 abundance in CGNPs, and suggest that excessive MCL-1 in Bcl-xLcKO mice prolongs CGNP proliferation by binding SUFU, resulting in increased SHH pathway activation. Accordingly, we propose that BCL-xL and MCL-1 interact with each other and with developmental mechanisms that regulate proliferation, to adjust the apoptotic threshold as CGNPs progress through postnatal neurogenesis to CGNs.


Subject(s)
Cerebellar Neoplasms/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Cell Proliferation , Cerebellar Neoplasms/pathology , Humans , Mice , Neurogenesis , Signal Transduction
16.
Trends Immunol ; 42(1): 3-5, 2021 01.
Article in English | MEDLINE | ID: mdl-33214057

ABSTRACT

A unique feature of the cytokine storm in coronavirus disease 2019 (COVID-19) is the dramatic elevation of interleukin 10 (IL-10). This was thought to be a negative feedback mechanism to suppress inflammation. However, several lines of clinical evidence suggest that dramatic early proinflammatory IL-10 elevation may play a pathological role in COVID-19 severity.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Interleukin-10/immunology , SARS-CoV-2/immunology , COVID-19/epidemiology , COVID-19/virology , Cytokine Release Syndrome/metabolism , Epidemics , Humans , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukin-10/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Models, Immunological , SARS-CoV-2/physiology , Severity of Illness Index
18.
Sci China Life Sci ; 63(12): 1833-1849, 2020 12.
Article in English | MEDLINE | ID: mdl-33355886

ABSTRACT

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people and caused tremendous morbidity and mortality worldwide. Effective treatment for coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 infection is lacking, and different therapeutic strategies are under testing. Host humoral and cellular immunity to SARS-CoV-2 infection is a critical determinant for patients' outcomes. SARS-CoV-2 infection results in seroconversion and production of anti-SARS-CoV-2 antibodies. The antibodies may suppress viral replication through neutralization but might also participate in COVID-19 pathogenesis through a process termed antibody-dependent enhancement. Rapid progress has been made in the research of antibody response and therapy in COVID-19 patients, including characterization of the clinical features of antibody responses in different populations infected by SARS-CoV-2, treatment of COVID-19 patients with convalescent plasma and intravenous immunoglobin products, isolation and characterization of a large panel of monoclonal neutralizing antibodies and early clinical testing, as well as clinical results from several COVID-19 vaccine candidates. In this review, we summarize the recent progress and discuss the implications of these findings in vaccine development.


Subject(s)
Antibodies, Viral/biosynthesis , COVID-19 Vaccines/therapeutic use , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/therapeutic use , Asymptomatic Infections , COVID-19/prevention & control , COVID-19 Vaccines/isolation & purification , China , Drug Development/trends , Host Microbial Interactions/immunology , Humans , Immunity, Humoral , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Models, Immunological , Pandemics , Reinfection/immunology , Reinfection/prevention & control , Seroconversion , COVID-19 Serotherapy
19.
Front Cell Dev Biol ; 8: 677, 2020.
Article in English | MEDLINE | ID: mdl-32766256

ABSTRACT

Coronavirus disease 2019 (COVID-19) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in tremendous morbidity and mortality worldwide. A major underlying cause of COVID-19 mortality is a hyperinflammatory cytokine storm in severe/critically ill patients. Although many clinical trials are testing the efficacy of targeting inflammatory cytokines/chemokines in COVID-19 patients, the critical inflammatory mediator initiating COVID-19 patient death is undefined. Here we suggest that the immunopathological pathway leading to COVID-19 mortality can be divided into three stages with distinct clinical features that can be used to guide therapeutic strategies. Our interpretation of the recently published clinical trials from COVID-19 patients suggests that the clinical efficacy in preventing COVID-19 mortality using IL-1 blockade is subjected to notable caveats, while that for IL-6 blockade is suboptimal. We discuss critical factors in determining appropriate inflammatory cytokine/chemokine targets, timing, and combination of treatments to prevent COVID-19 mortality.

20.
Front Cell Dev Biol ; 8: 205, 2020.
Article in English | MEDLINE | ID: mdl-32292785

ABSTRACT

Dendritic cell (DC)-based vaccination is a promising immunotherapeutic strategy for cancer. However, clinical trials have shown only limited efficacy, suggesting the need to optimize protocols for human DC vaccine preparation. In this study, we systemically compared five different human DC vaccine maturation protocols used in clinical trials: (1) a four-cytokine cocktail (TNF-α, IL-6, IL-1ß, and PGE2); (2) an α-DC-cytokine cocktail (TNF-α, IL-1ß, IFN-α, IFN-γ, and poly I:C); (3) lipopolysaccharide (LPS)/IFN-γ; (4) TNF-α and PGE2; and (5) TriMix (mRNAs encoding CD40L, CD70, and constitutively active Toll-like receptor 4 electroporated into immature DCs). We found that the four-cytokine cocktail induced high levels of costimulatory and HLA molecules, as well as CCR7, in DCs. Mature DCs (mDCs) matured with the four-cytokine cocktail had higher viability than those obtained with the other protocols. Based on these features, we chose the four-cytokine cocktail protocol to further improve the immunizing capability of DCs by introducing exogenous genes. We showed that introducing exogenous Bcl-2 increased DC survival. Furthermore, introducing IL-12p70 rescued the inhibition of IL-12 secretion by PGE2 without impairing the DC phenotype. Introducing both Bcl-2 and IL-12p70 mRNAs into DCs induced enhanced cytomegalovirus pp65-specific CD8+ T cells secreting IFN-γ and TNF-α. Taken together, our data suggest that DC matured by the four-cytokine cocktail combined with exogenous Bcl-2 and IL-12p70 gene expression represents a promising approach for clinical applications in cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...