Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int Ophthalmol ; 44(1): 53, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340174

ABSTRACT

High-throughput sequencing technology, also known as next-generation sequencing technology, can explore new biomarkers and specific gene mutations. It has a pivotal role in promoting the gene research, which can limit the detection area, lessen the time needed for sequencing. Also, it can quickly screen out the suspected pathogenic genes of patients, gain the necessary genetic data, and provide the basis for clinical diagnosis and genetic counseling. In the research of corneal diseases, through the DNA sequencing of patients' diseased cells, it can provide a deeper understanding of corneal diseases and improve the diagnosis, classification and treatment alternatives of various corneal diseases. This article will introduce the application progress of high-throughput sequencing technology in corneal diseases, which will help to understand the application of this technology in various corneal diseases.


Subject(s)
High-Throughput Nucleotide Sequencing , Humans , Mutation , Sequence Analysis, DNA
2.
Tissue Cell ; 73: 101626, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34479073

ABSTRACT

Vascular sprouting is a key process of angiogenesis and mainly related to the formation of stalk and tip cells. Many studies have found that angiogenesis has a great clinical significance in promoting the functional repair of impaired tissues and anti-angiogenesis is a key to treatment of many tumors. Therefore, how the pathways regulate angiogenesis by regulating the formation of stalk and tip cells is an urgent problem for researchers. This review mainly summarizes the research progress of pathways affecting the formation of stalk and tip cells during angiogenesis in recent years, including the main signaling pathways (such as VEGF-VEGFR-Dll4-Notch signaling pathway, ALK-Smad signaling pathway,CCN1-YAP/YAZ signaling pathway and other signaling pathways) and cellular actions (such as cellular metabolisms, intercellular tension and other actions), aiming to further give the readers an insight into the mechanism of regulating the formation of stalk and tip cells during angiogenesis and provide more targets for anti-angiogenic drugs.


Subject(s)
Neovascularization, Pathologic/pathology , Animals , Glycolysis , Humans , Neovascularization, Pathologic/metabolism , Receptors, Notch/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
3.
Exp Biol Med (Maywood) ; 246(21): 2269-2277, 2021 11.
Article in English | MEDLINE | ID: mdl-34233522

ABSTRACT

Epithelial tissue has important functions such as protection, secretion, and sensation. Epithelial damage is involved in various pathological processes. Bone morphogenetic proteins (BMPs) are a class of growth factors with multiple functions. They play important roles in epithelial cells, including in differentiation, proliferation, and migration during the repair of the epithelium. This article reviews the functions and mechanisms of the most profoundly studied BMPs in the process of epithelial damage repair and their clinical significance.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Epithelial Cells/metabolism , Animals , Epithelial Cells/pathology , Humans , Signal Transduction
4.
J Cataract Refract Surg ; 46(9): 1302-1307, 2020 09.
Article in English | MEDLINE | ID: mdl-32569029

ABSTRACT

Small-incision lenticule extraction (SMILE) is an effective and safe procedure for the correction of myopia due to minimally invasive and noncorneal flap surgery. However, the SMILE procedure has certain requirements for corneal cap thickness, attempted refractive correction, residual stromal bed thickness, and optical zone diameter, which sometimes make surgeons hesitant to choose SMILE or other refractive surgeries. The requirements limit its use in patients with high myopia. The purpose of this review was to find the optimal parameters of SMILE through discussing the best optical zone for high myopic patients, the visual quality of different optical zones, the choice of corneal cap thickness, and their effects on corneal biomechanical parameters, so surgeons can provide reference recommendations for patients with high myopia in choosing a reasonable and safe procedure.


Subject(s)
Corneal Surgery, Laser , Myopia , Refractive Surgical Procedures , Cornea/surgery , Corneal Stroma/surgery , Humans , Lasers, Excimer/therapeutic use , Myopia/surgery , Prospective Studies , Visual Acuity
5.
Chin J Integr Med ; 25(3): 182-189, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29285741

ABSTRACT

BACKGROUND: To observe the effects of Chinese medicine (CM) Polygonum cuspidatum (PC) on adenosine 5'-monophosphate-activated protein kinase (AMPK), forkhead box O3α (FOXO3α), Toll-like receptor-4 (TLR4), NACHT, LRR and PYD domains-containing protein 3 (NLRP3), and monocyte chemoattractant protein-1 (MCP-1) expression in a rat model of uric acid-induced renal damage and to determine the molecular mechanism. METHODS: A rat model of uric acid-induced renal damage was established, and rats were randomly divided into a model group, a positive drug group, and high-, medium-, and low-dose PC groups (n=12 per group). A normal group (n=6) was used as the control. Rats in the normal and model groups were administered distilled water (10 mL•kg-1) by intragastric infusion. Rats in the positive drug group and the high-, medium-, and low-dose PC groups were administered allopurinol (23.33 mg•kg-1), and 7.46, 3.73, or 1.87 g•kg-1•d-1 PC by intragastric infusion, respectively for 6 to 8 weeks. After the intervention, reverse transcription polymerase chain reaction, Western blot, enzyme linked immunosorbent assay, and immunohistochemistry were used to detect AMPK, FOXO3α, TLR4, NLRP3, and MCP-1 mRNA and protein levels in renal tissue or serum. RESULTS: Compared with the normal group, the mRNA transcription levels of AMPK and FOXO3α in the model group were significantly down-regulated, and protein levels of AMPKα1, pAMPKα1 and FOXO3α were significantly down-regulated at the 6th and 8th weeks (P<0.01 or P<0.05). The mRNA transcription and protein levels of TLR4, NLRP3 and MCP-1 were significantly up-regulated (P<0.01 or P<0.05). Compared with the model group, at the 6th week, the mRNA transcription levels of AMPK in the high- and medium-dose groups, and protein expression levels of AMPKα1, pAMPKα1 and FOXO3α in the high-dose PC group, AMPKα1 and pAMPKα1 in the mediumdose PC group, and pAMPKα1 in the low-dose PC group were significantly up-regulated (P<0.01 or P<0.05); the mRNA transcription and protein levels of TLR4 and NLRP3 in the 3 CM groups, and protein expression levels of MCP-1 in the medium- and low-dose PC groups were down-regulated (P<0.01 or P<0.05). At the 8th week, the mRNA transcription levels of AMPK in the high-dose PC group and FOXO3α in the medium-dose PC group, and protein levels of AMPKα1, pAMPKα1 and FOXO3α in the 3 CM groups were significantly up-regulated (P<0.01 or P<0.05); the mRNA transcription levels of TLR4 in the medium- and low-dose PC groups, NLRP3 in the high- and low-dose PC groups and MCP-1 in the medium- and low-dose PC groups, and protein expression levels of TLR4, NLRP3 and MCP-1 in the 3 CM groups were down-regulated (P<0.01 or P<0.05). CONCLUSION: PC up-regulated the expression of AMPK and its downstream molecule FOXO3α and inhibited the biological activity of TLR4, NLRP3, and MCP-1, key signal molecules in the immunoinflammatory network pathway, which may be the molecular mechanism of PC to improve hyperuricemia-mediated immunoinflflammatory metabolic renal damage.


Subject(s)
AMP-Activated Protein Kinases/physiology , Fallopia japonica , Forkhead Box Protein O3/physiology , Hyperuricemia/complications , Kidney Diseases/drug therapy , Plant Extracts/pharmacology , Signal Transduction/drug effects , Animals , Chemokine CCL2/blood , Disease Models, Animal , Kidney Diseases/etiology , Male , Rats , Rats, Sprague-Dawley , Uric Acid
6.
Mol Med Rep ; 12(2): 2291-300, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25936423

ABSTRACT

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a technique widely used for the quantification of mRNA transcription, It is well recognized that the reference genes used in RT-qPCR require appropriate validation to ensure that gene expression is unaffected by experimental conditions. The differentiation of bone mesenchymal stem cells (BMSCs) into neurons is important in the treatment of nerve injury. In gene expression analysis of the differentiation of BMSCs into neuronal cells by, the commonly used reference genes for RNA analysis are often selected without any preliminary evaluation of their suitability. The present study aimed to evaluate the mRNA expression levels of 11 putative reference genes, including ACTB, ARBP, B2M, CYCA, GAPDH, GUSB, HPRT, PPIA, RPL13A, TBP and PGK1, in order to select the most suitable reference genes for RT-qPCR of the differentiation of neuronal cells by BMSCs. The mRNA expression levels of the 11 putative reference genes were examined using RT-qPCR in rat BMSCs differentiated into neuronal cells. Normal BMSCs and three types of rat BMSCs, which were chemically induced to differentiate into neurons using neurotrophic cytokines and co-culture with retinal cells. The geNorm, NormFinder and BestKeeper software programs were used to select the most suitable reference genes. The results of the analyses using the three software programs demonstrated that RPL13A was the most stable among all the groups, while ACTB was the least stable. The combination of CYCA and PPIA reference genes contributed the most to increasing stability. The suitability of selected reference genes requires previous pre-selection in every investigation. Based on the three software programs, RPL13A, and the combination of CYCA and PPIA were identified as the most suitable reference genes for RT-qPCR in neuronal cells differentiated from BMSCs.


Subject(s)
Bone Marrow Cells/metabolism , Genes, Essential , Mesenchymal Stem Cells/metabolism , Neurons/metabolism , Reverse Transcriptase Polymerase Chain Reaction/standards , Animals , Animals, Newborn , Biomarkers/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Coculture Techniques , Cyclin A/genetics , Cyclin A/metabolism , Gene Expression , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Nerve Growth Factors/pharmacology , Neurons/cytology , Neurons/drug effects , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Primary Cell Culture , Rats , Rats, Wistar , Reference Standards , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...