Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 540: 109144, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733729

ABSTRACT

Chitooligosaccharides, the hydrolysis products of chitin, have superior biological activities and application value to those of chitin itself; however, the ordered and highly crystalline structure of chitin renders its degradation by chitinase difficult. Herein, the effects of plasma-activated water (PAW) pre-treatment on the physicochemical properties, crystal structure, and enzymatic hydrolysis of chitin were investigated. The hydrolysis of PAW-pre-treated chitin (PAW activation time of 5 min) using chitinase from Vibrio harveyi (VhChit2) yielded 71 % more reducing sugar, compared with that from untreated chitin, with the degree of chitin hydrolysis increasing from 13 % without pre-treatment to 23 % post-treatment. Moreover, the amount of VhChit2 adsorbed by chitin increased from 41.7 to 58.2 mg/g. Fourier transform infrared spectrometry revealed that PAW could break the ß-1,4-glycosidic bonds of chitin (but had no effects on the hydrogen and amido bonds), thereby decreasing the molecular weight and crystallinity of the polysaccharide, which caused its structural damage and enhanced its enzymatic hydrolysis by chitinase. Consequently, PAW pre-treatment can be considered a simple, effective, and environmentally-friendly method for the biotransformation of chitin as its easier hydrolysis yields high-value products.


Subject(s)
Chitin , Chitinases , Molecular Weight , Vibrio , Water , Chitinases/chemistry , Chitinases/metabolism , Chitin/chemistry , Chitin/metabolism , Chitin/analogs & derivatives , Water/chemistry , Hydrolysis , Vibrio/enzymology
2.
Carbohydr Polym ; 307: 120640, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36781282

ABSTRACT

In this study, two chitinases (VhChit2 and VhChit6) from Vibrio harveyi possessed specific activity of 36.5 and 20.8 U/mg, respectively. Structure analysis indicates that their amino acid composition of active sites is similar, but the substrate binding cleft of VhChit2 is deeper than that of VhChit6. They were shown to have a synergistic effect on chitin degradation, and the optimized degree of synergy and the degradation ratio of chitin reached 1.75 and 23.6 %, respectively. The saturated adsorption capacity of VhChit2 and VhChit6 adsorbed in 1 g of chitin was 48.5 and 33.4 mg. It was found that VhChit2 and VhChit6 had different adsorption sites on chitin, making more enzymes absorbed by chitin. Furthermore, the combined use of VhChit2 and VhChit6 increased their binding force of chitinases with the substrate. The synergistic action of VhChit2 and VhChit6 may be attributed to their different adsorption sites on chitin and the increased binding force with chitin.


Subject(s)
Chitinases , Vibrio , Chitinases/chemistry , Chitin/pharmacology , Chitin/metabolism , Catalytic Domain
SELECTION OF CITATIONS
SEARCH DETAIL
...