Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 41(7): 3095-3101, 2020 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-32608881

ABSTRACT

Ammonia (NH3) is an important precursor of fine particles and nitrogen deposition. It is critical to identify and quantify the sources of NH3 before the implementation of a mitigation strategy. Stable isotope analysis in R (SIAR) has potential with regard to the source apportionment of NH3, but its reliability is closely related to the signatures (δ15N-NH3) of emission sources. Based on SIAR, we found that the agricultural contribution varied significantly with mean δ15N-NH3 values of endmember input. In contrast, both the contributions of fossil fuel and NH3 slip showed low sensitivity against the change of endmember input. Moreover, the agricultural contribution changed by about 20% due to the variations in agricultural endmember mean values. Such a change is five times that due to the variations in endmember standard deviation values. Notably, regardless of the number of input sources tested, "non-agricultural source" was the dominant source of NH3 during hazy days in January 2013 in Beijing. Since various agricultural sources showed large variations in δ15N-NH3, future studies should focus on the endmember signatures of agricultural sources to further reduce the uncertainty in SIAR-based NH3 source apportionment.

2.
Huan Jing Ke Xue ; 40(6): 2493-2500, 2019 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-31854638

ABSTRACT

To characterize the dry and wet deposition of atmospheric trace elements in urban Beijing, both active and passive samplers were used to collect bulk and wet sedimentation samples between May 2014 and April 2015.The concentrations of 19 trace elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Cu, Zn, As, Se, Mo, Cd, Sb, Tl, Th, and U) in the samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results show that the concentrations of metals in bulk deposition samples[7160.68 µg·L-1 (Ca)-0.02 µg·L-1 (Th)] were generally higher than those in wet deposition samples[4237.74 µg·L-1 (Ca)-0.01 µg·L-1 (Th)], but the enrichment factors of each metal in the two kinds of samples were less different. Of note, the enrichment factors of Cu, As, Tl, Zn, Cd, Se, and Sb were all larger than 100, thus indicating that these heavy metals were mainly from anthropogenic sources. The statistical analysis of the air mass trajectory shows that the precipitation chemistry in urban Beijing is mainly affected by southward air flows. The air mass originating from the southwest region always had higher concentrations of Ca, Mg, Fe, Al, Cu, Mo, U, and Th, whereas the air mass from the south had higher concentrations of K, Zn, Mn, Sb, Cd, and Tl. During the observation period, the bulk deposition fluxes of metals varied from 3591.35 mg·(m2·a)-1 (Ca)-0.01 mg·(m2·a)-1 (Th), and wet deposition fluxes varied from 1847.78 mg·(m2·a)-1 (Ca)-0.01 mg·(m2·a)-1 (Th). The dry deposition fluxes of the 19 metals varied from 1743.57 mg·(m2·a)-1 (Ca)-0.01 mg·(m2·a)-1 (Th). The particle size has important implications in the evaluation of the relative importance of dry deposition versus wet deposition during the scavenging of trace elements in air.

SELECTION OF CITATIONS
SEARCH DETAIL
...