Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 929: 172495, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38649056

ABSTRACT

Pollutants produced by cremation furnaces have gradually caused concern because of the increasing rate of cremation around the world. In this study, the levels, patterns, and emission factors of unintentional persistent organic pollutants (UPOPs) from cremation were investigated. The toxic equivalent (TEQ) concentrations (11 % O2 normalized) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in flue gas ranged from 0.036 to 22 ng TEQ/Nm3, while the levels of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in flue gas samples ranged from 0.0023 to 1.2 ng TEQ/Nm3 and 0.17-44 pg TEQ/Nm3, respectively. The average concentrations of UPOPs in flue gas from car-type furnaces were higher than those from flat-panel furnaces. Secondary chambers and air pollution control devices were effective for controlling UPOPs emissions. However, heat exchangers were not as effective for reducing UPOPs emissions. It was observed that the UPOPs profiles exhibited dissimilarities between fly ash and flue gas samples. HxCDF, OCDD, and PeCDF were the dominant homologs of PCDD/Fs in flue gas, while HxCDF, PeCDF, and HpCDF were the dominant homologs in fly ash. The fractions of MoCBs and MoCNs in fly ash were higher than those in flue gas. Finally, we conducted an assessment of the global emissions of UPOPs from cremation in the years of 2019 and 2021. The total emission of UPOPs in 47 countries was estimated at 239 g TEQ in 2021, which was during the peak period of the COVID-19 pandemic worldwide. The emissions in 2021 increased by approximately 24 % compared to 2019, with the impact of COVID-19 being a significant factor that cannot be disregarded.


Subject(s)
Air Pollutants , Cremation , Environmental Monitoring , Persistent Organic Pollutants , Air Pollutants/analysis , Environmental Monitoring/methods , Polychlorinated Dibenzodioxins/analysis , Polychlorinated Biphenyls/analysis , Incineration , Dibenzofurans, Polychlorinated/analysis , Air Pollution/statistics & numerical data
2.
Environ Res ; 251(Pt 1): 118540, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38401685

ABSTRACT

The Yangtze River Delta (YRD), one of the most economically developed and industrialized regions in China, is confronted with challenges arising from rapid urbanization, particularly environmental pollution. The collection of surface water and sediment samples from forty-nine sites in the YRD was conducted to analyze 2378-substituted polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) congeners. The detected concentrations of PCDD/Fs were 0-5.3 pg TEQ/L in water and 0.12-1493 pg TEQ/g dw in sediment. The PCDD/Fs contamination in the sediment was widespread in the YRD. There were variations in the congener characteristics of PCDD/Fs in surface water and sediment. The proportion of OCDD was significantly lower in surface water samples compared to sediment, while the less chlorine-substituted homologs were found in larger proportions. To understand the partitioning and behavior of dioxins within the water-sediment system, we calculated the organic carbon normalized partition coefficients and fugacity fraction (ff) of PCDD/F congeners. The results revealed that the PCDD/Fs had not attained a state of distributional equilibrium, and the non-specific hydrophobic effect seemed minimally influential on their partitioning between sediment and water. The average ff values, which varied between 0.06 and 0.63, indicated differing migration directions for the PCDD/F congeners. Source identification analysis provided evidence that the dioxins in the river water were primarily attributed to industrial thermal processes. Iron and steel smelting, along with pesticide production and use, were likely responsible for the sediment contamination. This comprehensive analysis underscores the complex nature of PCDD/Fs pollution in the YRD and highlights the necessity for targeted environmental management strategies.


Subject(s)
Dibenzofurans, Polychlorinated , Environmental Monitoring , Geologic Sediments , Polychlorinated Dibenzodioxins , Rivers , Water Pollutants, Chemical , China , Geologic Sediments/chemistry , Geologic Sediments/analysis , Polychlorinated Dibenzodioxins/analysis , Water Pollutants, Chemical/analysis , Dibenzofurans, Polychlorinated/analysis , Rivers/chemistry , Benzofurans/analysis
3.
Environ Sci Technol ; 57(45): 17522-17533, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37905521

ABSTRACT

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and short-chain chlorinated paraffins (SCCPs) can be formed during the production of chlorinated paraffins (CPs). Detection and accurate quantification of PCDD/Fs in CPs are challenging because of their matrix complexity. Therefore, the occurrence and formation mechanisms of PCDD/Fs from CPs have not been studied extensively in the past. In this study, 15 commercial samples including solid and liquid CPs were collected in 2022 from China. The average ΣSCCP concentrations detected in the solid and liquid CPs were 158 and 137 mg/g, respectively. The average International Toxic Equivalent (I-TEQ) values of 2,3,7,8-PCDD/F in solid and liquid CPs were 15.8 pg I-TEQ/g and 15.0 pg I-TEQ/g, respectively. The solid and liquid CPs had different predominant congener groups for SCCPs and PCDD/Fs. Possible formation routes for the generation of PCDD/Fs were analyzed by screening precursors in paraffin and laboratory-scale thermochemical experiments of CPs. The transformation between 2,3,7,8-PCDD/Fs and non-2,3,7,8-PCDD/Fs was recognized by calculating the successive chlorination preference. The first reported occurrence of PCDD/Fs in CP commercial products indicated that exposure to CPs and downstream products might be an assignable source of PCDD/F emission, which is of great significance to further explore the control factors of PCDD/Fs in the whole life cycle of CPs.


Subject(s)
Benzofurans , Dioxins , Polychlorinated Dibenzodioxins , Paraffin , Dibenzofurans , Dibenzofurans, Polychlorinated/analysis , Benzofurans/analysis , Mineral Oil , China , Environmental Monitoring
4.
Environ Pollut ; 327: 121576, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37028786

ABSTRACT

ANALYSIS: of air conditioner (AC) filter dust can reveal the level of organophosphate ester (OPE) pollution in indoor environments, but comprehensive research on this topic remains lacking. This study combined non-targeted and targeted analysis to screen and analyze 101 samples of AC filter dust, settled dust, and air obtained in 6 indoor environments. Phosphorus-containing organic compounds account for a large proportion of the organic compounds found in indoor environments, and OPEs might be the main pollutants. Using toxicity data and traditional priority polycyclic aromatic hydrocarbons for toxicity prediction of OPEs, 11 OPEs were prioritized for further quantitative analysis. The concentration of OPEs in AC filter dust was highest, followed in descending order by that in settled dust and that in air. The concentration of OPEs in AC filter dust in the residence was two to seven times greater than that in the other indoor environments. More than 56% of the OPEs in AC filter dust showed significant correlation, while those in settled dust and air were weakly correlated, suggesting that large amounts of OPEs collected over long periods could have a common source. Fugacity results showed that OPEs were transferred easily from dust to air, and that dust was the main source of OPEs. The values of both the carcinogenic risk and the hazard index were lower than the corresponding theoretical risk thresholds, indicating low risk to residents through exposure to OPEs in indoor environments. However, it is necessary to remove AC filter dust in a timely manner to prevent it becoming a pollution sink of OPEs that could be rereleased and endanger human health. This study has important implications for comprehensive understanding of the distribution, toxicity, sources, and risks of OPEs in indoor environments.


Subject(s)
Air Pollution, Indoor , Flame Retardants , Humans , Environmental Monitoring , Esters/analysis , Flame Retardants/analysis , Organophosphates/analysis , Risk Assessment , Air Pollution, Indoor/analysis , Dust/analysis , China
5.
Molecules ; 29(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202620

ABSTRACT

Hexabromocyclododecane (HBCD) is the most important flame retardant that has been used in Expanded Polystyrene foam and Extruded Polystyrene foam in the past forty years across the world. China was the major producer and user of HBCD, and the total HBCD production was about 0.3 million tons. Although HBCD was completely banned in China in 2021 because of its long-range transport, bioaccumulation and toxicity, there is still a lot of residue in the environment. Therefore, we reviewed multiple studies concerning the distribution of HBCD in diverse environmental matrices, such as in the air, dust, soil, water, sediment, and biota. Results revealed that HBCD levels in different environments in China present geographical variation and were at a high level compared with other countries. In all environmental media, relatively high HBCD concentrations have been found in industrial and urban areas. Industrialization and urbanization are two important factors that influence the concentration and distribution of HBCD in the environment. In terms of isomer, γ-HBCD was the dominant isomer in soil, water, and sediment, while in the biota α-HBCD was the predominant isomer.

6.
Chemosphere ; 287(Pt 3): 132265, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34537458

ABSTRACT

Spatial trends, partitioning behavior, and potential sources of polychlorinated naphthalenes (PCNs) in water-sediment system from the Yangtze River Delta (YRD) were investigated in this study. The total concentrations of 75 PCNs in water and sediment samples were 0.022-0.310 ng/L and 0.01-1.59 ng/g dry weight, respectively. The homolog patterns in the sediment and water samples were somewhat different. Di-to tetra-CNs made larger contributions in the sediment, while the mono-to tri-CNs were dominant homologs in the water. Overall, the low-chlorinated naphthalenes (mono-to tetra-CNs) were found to be the dominant homologs in the YRD water and sediment samples, and the homolog group contributions to the total PCNs concentrations decreased as the number of chlorine atoms increased. CN-5/7 and CN-24/14 were found at high concentrations in both the water and sediment. Partitioning and transfer of PCNs between water and sediment were assessed by calculating the partition coefficients and fugacity fractions. The partition coefficients showed that PCNs were not in equilibrium status in the water-sediment system, and hydrophobicity played an important role in PCNs partitioning. The fugacity fractions indicated that mono- to tri-CNs had stronger tendencies to escape from the sediment into the water, while the high-chlorinated naphthalenes close to equilibrium. Principal component analysis and correlation analysis indicated that industrial thermal processes and the use and disposal of products containing PCNs industrial products are sources of PCNs in the YRD water-sediment system.


Subject(s)
Environmental Monitoring , Rivers , China , Naphthalenes/analysis , Water
7.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641531

ABSTRACT

The occurrences, distributions, and risks of 55 target volatile organic compounds (VOCs) in water, sediment, sludge, and soil samples taken from a chemical industrial park and the adjacent area were investigated in this study. The Σ55-VOCs concentrations in the water, sediment, sludge, and soil samples were 1.22-5449.21 µg L-1, ND-52.20 ng g-1, 21.53 ng g-1, and ND-11.58 ng g-1, respectively. The main products in this park are medicines, pesticides, and novel materials. As for the species of VOCs, aromatic hydrocarbons were the dominant VOCs in the soil samples, whereas halogenated aliphatic hydrocarbons were the dominant VOCs in the water samples. The VOCs concentrations in water samples collected at different locations varied by 1-3 orders of magnitude, and the average concentration in river water inside the park was obviously higher than that in river water outside the park. However, the risk quotients for most of the VOCs indicated a low risk to the relevant, sensitive aquatic organisms in the river water. The average VOCs concentration in soil from the park was slightly higher than that from the adjacent area. This result showed that the chemical industrial park had a limited impact on the surrounding soil, while the use of pesticides, incomplete combustion of coal and biomass, and automobile exhaust emissions are all potential sources of the VOCs in the environmental soil. The results of this study could be used to evaluate the effects of VOCs emitted from chemical production and transportation in the park on the surrounding environment.

8.
J Hazard Mater ; 418: 126265, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34102354

ABSTRACT

The global status of dioxin emissions across 150 countries/regions were compiled in this study. China, the major emitter of dioxin and the largest developing country, was chosen as an example to illustrate its emission reductions. The global dioxin emissions were about 97.0 kg TEQ/year, Asia and Africa emitted the most dioxins among the continents. Globally, open burning processes were the most important sources of dioxins. Dioxin emissions in developed countries have remained at low and stable level, while those in developing countries have remained at relatively high level or have continued to increase in recent years. It can be speculated that the global dioxin emissions will increase first and then decrease in the future. Chinese dioxin emissions were stable around 9 kg toxic equivalent (TEQ) in recent years, while 17 subcategories are the key sources of dioxin control in the future. Moreover, according to analysis toward China's dioxin emission trend and sources, there is a large space for dioxins reduction in industries such as metal production, waste incineration and disposal. The results indicated that there is at least 30-70% of reduction scope in China based on three scenarios, and this will reduce the world's annual dioxin emissions by 2.7-6.8%.


Subject(s)
Air Pollutants , Benzofurans , Dioxins , Polychlorinated Dibenzodioxins , Air Pollutants/analysis , Dioxins/analysis , Environmental Monitoring , Incineration , Polychlorinated Dibenzodioxins/analysis
9.
Environ Pollut ; 283: 117121, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33865098

ABSTRACT

The Yangtze River Delta (YRD) is one of the fastest developing areas in eastern China and contains many chemical industry parks. The profiles and sources of polycyclic aromatic hydrocarbons (PAHs) in soil in chemical industry parks and surrounding areas in the YRD were investigated by analyzing soil samples (n = 64) were collected in the YRD and Rudong chemical park (RD), a typical chemical park in the Yangtze River Delta. The total concentrations of 19 PAHs in the YRD soil samples were 16.3-4694 ng g-1 (mean 688 ng g-1), and the total concentrations of PAHs in RD were 21.6-246 ng g-1 (mean 75.4 ng g-1). The PAHs in soil in YRD were dominated by four-ring and five-ring PAHs, and the PAHs in RD were dominated by two-ring and three-ring PAHs. It suggested that PAHs may have been supplied to soil in YRD predominantly through coal combustion and vehicle emissions, PAHs in the soil of RD may be due to the volatilization and leakage of chemical raw material. According to the different distribution characteristics of PAHs, the ratio (1.5) of (2 + 3) rings/4 rings was proposed to identify the chemical source of PAHs. The PAH isomer ratios and principal component analysis/multiple linear regression (PCA/MLRA) results indicated that PAHs concentrations in soil in the YRD and RD are mainly supplied by industrial and traffic emissions. Incremental lifetime cancer risks (ILCRs) indicated that PAHs in soil pose negligible cancer risks to children and adults, but much stronger risks to children than adults.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Adult , Chemical Industry , Child , China , Environmental Monitoring , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Rivers , Soil , Soil Pollutants/analysis
10.
Sci Total Environ ; 782: 146828, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33839653

ABSTRACT

Air pollution control devices (APCDs) have been fitted to many coal-fired power plants to decrease the impacts of pollutants generated during coal combustion. APCDs remove conventional pollutants but also decrease volatile organic compound (VOC) emissions. In this study, flue gas samples were collected from different points in seven typical coal-fired power and two industrial boilers, and the VOC concentrations in the flue gas samples were determined by gas chromatography-mass spectrometry (GC-MS). Selective catalytic reduction (SCR) systems and electrostatic precipitators (ESP) can synergistically remove VOCs, the mean removal rate of VOCs by ESP was 42% ± 9%. This was caused by the catalyst in SCR systems and the condensation process in the ESP. Wet flue gas desulfurization (WFGD) affected different VOCs in different ways, increasing the halogenated hydrocarbons and aromatic hydrocarbons concentrations but decreasing the oxygenated VOCs concentrations by 12%. Wet electrostatic precipitators (WESP) increased VOC emissions. By calculating Ozone formation potential (OFP), aromatic hydrocarbons are important contributors to ozone production. The emission factor of the power plant was 0.69 g/GJ, and the Chinese annual emission was about 1.2 × 104 t. VOCs emissions in different regions were affected by factors such as the economy and population. VOC emissions can be decreased by using the most appropriate unit load and improving the VOC removal efficiencies of the APCDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...