Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 11(11)2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36421303

ABSTRACT

Shigellosis is a leading global cause of diarrheal disease and travelers' diarrhea now being complicated by the dissemination of antibiotic resistance, necessitating the development of alternative antibacterials such as therapeutic bacteriophages (phages). Phages with lytic activity against Shigella strains were isolated from sewage. The genomes of 32 phages were sequenced, and based on genomic comparisons belong to seven taxonomic genera: Teetrevirus, Teseptimavirus, Kayfunavirus, Tequatrovirus, Mooglevirus, Mosigvirus and Hanrivervirus. Phage host ranges were determined with a diverse panel of 95 clinical isolates of Shigella from Southeast Asia and other geographic regions, representing different species and serotypes. Three-phage mixtures were designed, with one possessing lytic activity against 89% of the strain panel. This cocktail exhibited lytic activity against 100% of S. sonnei isolates, 97.2% of S. flexneri (multiple serotypes) and 100% of S. dysenteriae serotypes 1 and 2. Another 3-phage cocktail composed of two myophages and one podophage showed both a broad host range and the ability to completely sterilize liquid culture of a model virulent strain S. flexneri 2457T. In a Galleria mellonella model of lethal infection with S. flexneri 2457T, this 3-phage cocktail provided a significant increase in survival.

2.
Viruses ; 14(4)2022 03 29.
Article in English | MEDLINE | ID: mdl-35458437

ABSTRACT

Providencia rettgeri is an emerging opportunistic Gram-negative pathogen with reports of increasing antibiotic resistance. Pan-drug resistant (PDR) P. rettgeri infections are a growing concern, demonstrating a need for the development of alternative treatment options which is fueling a renewed interest in bacteriophage (phage) therapy. Here, we identify and characterize phage vB_PreP_EPr2 (EPr2) with lytic activity against PDR P. rettgeri MRSN 845308, a clinical isolate that carries multiple antibiotic resistance genes. EPr2 was isolated from an environmental water sample and belongs to the family Autographiviridae, subfamily Studiervirinae and genus Kayfunavirus, with a genome size of 41,261 base pairs. Additional phenotypic characterization showed an optimal MOI of 1 and a burst size of 12.3 ± 3.4 PFU per bacterium. EPr2 was determined to have a narrow host range against a panel of clinical P. rettgeri strains. Despite this fact, EPr2 is a promising lytic phage with potential for use as an alternative therapeutic for treatment of PDR P. rettgeri infections.


Subject(s)
Bacteriophages , Anti-Bacterial Agents , Host Specificity , Providencia/genetics
3.
Microbiol Resour Announc ; 10(19)2021 May 13.
Article in English | MEDLINE | ID: mdl-33986073

ABSTRACT

Here, we describe genome sequences of 17 Pseudomonas aeruginosa phages, including therapeutic candidates. They belong to the families Myoviridae, Podoviridae, and Siphoviridae and six different genera. The genomes ranged in size from 42,788 to 88,805 bp, with G+C contents of 52.5% to 64.3% and numbers of coding sequences from 58 to 179.

4.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668899

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections pose a serious health threat. Bacteriophage-antibiotic combination therapy is a promising candidate for combating these infections. A 5-phage P. aeruginosa cocktail, PAM2H, was tested in combination with antibiotics (ceftazidime, ciprofloxacin, gentamicin, meropenem) to determine if PAM2H enhances antibiotic activity. Combination treatment in vitro resulted in a significant increase in susceptibility of MDR strains to antibiotics. Treatment with ceftazidime (CAZ), meropenem, gentamicin, or ciprofloxacin in the presence of the phage increased the number of P. aeruginosa strains susceptible to these antibiotics by 63%, 56%, 31%, and 81%, respectively. Additionally, in a mouse dorsal wound model, seven of eight mice treated with a combination of CAZ and PAM2H for three days had no detectable bacteria remaining in their wounds on day 4, while all mice treated with CAZ or PAM2H alone had ~107 colony forming units (CFU) remaining in their wounds. P. aeruginosa recovered from mouse wounds post-treatment showed decreased virulence in a wax worm model, and DNA sequencing indicated that the combination treatment prevented mutations in genes encoding known phage receptors. Treatment with PAM2H in combination with antibiotics resulted in the re-sensitization of P. aeruginosa to antibiotics in vitro and a synergistic reduction in bacterial burden in vivo.

5.
Microbiol Resour Announc ; 9(30)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703841

ABSTRACT

A potentially therapeutic Twort-like myophage, Esa1, with specificity toward Staphylococcus aureus was isolated from lake water. We report the complete genome sequence of ESa1, assembled using both MinION and Illumina MiSeq reads, consisting of 153,106 bp, with 30.3% GC content, 253 protein coding sequences, 4 tRNAs, and 10,437-bp direct terminal repeats.

6.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32675185

ABSTRACT

We report the genome sequences of 10 Pseudomonas aeruginosa phages studied for their potential for formulation of a therapeutic cocktail; they represent the families Myoviridae, Podoviridae, and Siphoviridae Genome sizes ranged from 43,299 to 88,728 nucleotides, with G+C contents of 52.1% to 62.2%. The genomes contained 68 to 168 coding sequences.

7.
Viruses ; 10(11)2018 11 08.
Article in English | MEDLINE | ID: mdl-30413044

ABSTRACT

A potential concern with bacteriophage (phage) therapeutics is a host-versus-phage response in which the immune system may neutralize or destroy phage particles and thus impair therapeutic efficacy, or a strong inflammatory response to repeated phage exposure might endanger the patient. Current literature is discrepant with regard to the nature and magnitude of innate and adaptive immune response to phages. The purpose of this work was to study the potential effects of Staphylococcus aureus phage K on the activation of human monocyte-derived dendritic cells. Since phage K acquired from ATCC was isolated around 90 years ago, we first tested its activity against a panel of 36 diverse S. aureus clinical isolates from military patients and found that it was lytic against 30/36 (83%) of strains. Human monocyte-derived dendritic cells were used to test for an in vitro phage-specific inflammatory response. Repeated experiments demonstrated that phage K had little impact on the expression of pro- and anti-inflammatory cytokines, or on MHC-I/II and CD80/CD86 protein expression. Given that dendritic cells are potent antigen-presenting cells and messengers between the innate and the adaptive immune systems, our results suggest that phage K does not independently affect cellular immunity or has a very limited impact on it.


Subject(s)
Cytokines/genetics , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Dendritic Cells/virology , Gene Expression , Staphylococcus Phages/physiology , Staphylococcus aureus/virology , Cytokines/metabolism , Dendritic Cells/immunology , Host Specificity , Humans , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Phage Therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Staphylococcus Phages/isolation & purification , Virus Replication
10.
PLoS One ; 6(9): e25486, 2011.
Article in English | MEDLINE | ID: mdl-21980477

ABSTRACT

BACKGROUND: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. CONCLUSIONS/SIGNIFICANCE: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.


Subject(s)
Bacteriophages/physiology , Mutation , Receptors, Virus/metabolism , Yersinia pestis/genetics , Yersinia pestis/virology , Animals , Bacteriophages/metabolism , Female , Lipopolysaccharides/metabolism , Mice , Mutagenesis, Site-Directed , Plague/therapy , Plague/virology , Protein Transport , Receptors, Virus/genetics , Species Specificity , Yersinia pestis/metabolism , Yersinia pestis/pathogenicity
11.
PLoS One ; 5(6): e11337, 2010 Jun 28.
Article in English | MEDLINE | ID: mdl-20596528

ABSTRACT

BACKGROUND: Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS: The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE: Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.


Subject(s)
Bacteriophages/isolation & purification , Plague/diagnosis , Polymerase Chain Reaction/methods , Yersinia pestis/isolation & purification , Bacteriophages/genetics , Base Sequence , DNA Primers , DNA, Viral/analysis , Humans , Sensitivity and Specificity , Yersinia pestis/genetics , Yersinia pestis/virology
12.
Gene ; 371(1): 68-74, 2006 Apr 12.
Article in English | MEDLINE | ID: mdl-16426772

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia in humans. A pathological hallmark in the brain of an AD patient is extracellular amyloid plaques formed by accumulated beta-amyloid protein (Abeta), a metabolic product of amyloid precursor protein (APP). Studies have revealed a strong genetic linkage in the early-onset familial form (<60 years old) of AD. For example, some mutant APPs are transmitted dominantly and are segregated with inheritance of early onset AD. These mutants facilitate Abeta production. The "Swedish" mutations (APP(SW)) and the "London" mutation (APP(LON)) are examples of these mutants. Selective silencing of these mutant alleles holds therapeutic promise for AD. Here we show that the expression of the mutant APPs was selectively inhibited by RNA interference. The best selectivity was obtained when the mismatches were centrally placed in the antisense strand of small interfering RNAs. Introducing an additional mismatch in the antisense strand may improve the selectivity. The addition of a G at 5' end of the antisense strand may enhance the efficacy of gene silencing by RNA interference. Our results illustrate the guiding principles for selection of targeted sequences to achieve allele-specific silencing. The sequences that are effective to silence APP(SW) and APP(LON) as identified in this study may be useful in both in vivo and in vitro studies to investigate the pathophysiological role of APP(SW) and APP(LON) in AD development.


Subject(s)
Alleles , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Mutation , RNA Interference , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/biosynthesis , Animals , CHO Cells , Cricetinae , Cricetulus , Gene Expression , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...