Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Steroids ; 209: 109470, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38997080

ABSTRACT

In this study, we developed an effective method for the large-scale synthesis of chenodeoxycholic acid (CDCA) from phocaecholic acid (PhCA). A high total yield of up to 72 % was obtained via five steps including methyl esterification, Ts-protection, bromination, reduction, and hydrolysis. The structures of the intermediates were confirmed by 1H NMR (Nuclear Magnetic Resonance), 13C NMR, HRMS (High Resolution Mass Spectrometry), and IR (Infrared Spectroscopy) spectroscopies. This method offers a new and practical approach to the synthesizing of CDCA.

2.
Clin Transl Immunology ; 9(10): e1185, 2020.
Article in English | MEDLINE | ID: mdl-33133598

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is the most common form of arthritis characterised by cartilage degradation, synovitis and pain. Disease modifying treatments for OA are not available. The critical unmet need is to find therapeutic targets to reduce both disease progression and pain. The cytokine IL-33 and its receptor ST2 have been shown to play a role in immune and inflammatory diseases, but their role in osteoarthritis is unknown. METHODS: Non-OA and OA human chondrocytes samples were examined for IL-33 and ST2 expression. Novel inducible cartilage specific knockout mice (IL-33Acan CreERT2) and inducible fibroblast-like synoviocyte knockout mice (IL-33Col1a2 CreERT2) were generated and subjected to an experimental OA model. In addition, wild-type mice were intra-articularly administered with either IL-33- or ST2-neutralising antibodies during experimental OA studies. RESULTS: IL-33 and its receptor ST2 have increased expression in OA patients and a murine disease model. Administering recombinant IL-33 increased OA and pain in vivo. Synovial fibroblast-specific deletion of IL-33 decreased synovitis but did not impact disease outcomes, whilst cartilage-specific deletion of IL-33 improved disease outcomes in vivo. Blocking IL-33 signalling also reduced the release of cartilage-degrading enzymes in human and mouse chondrocytes. Most importantly, we show the use of monoclonal antibodies against IL-33 and ST2 attenuates both OA and pain in vivo. CONCLUSION: Overall, our data reveal blockade of IL-33 signalling as a viable therapeutic target for OA.

SELECTION OF CITATIONS
SEARCH DETAIL
...