Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2402635, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639419

ABSTRACT

Solution-based methods for fabricating all-inorganic perovskite film arrays often suffer from limited control over nucleation and crystallization, resulting in poor homogeneity and coverage. To improve film quality, advanced vapor deposition techniques are employed for continuous film. Here, the vapor deposition strategy to the all-inorganic perovskite films array, enabling area-selective deposition of perovskite through substrate modulation is expanded. It can yield a high-quality perovskite film array with different pixel shapes, various perovskite compositions, and a high resolution of 423 dpi. The resulting photodetector arrays exhibit remarkable optoelectronic performance with an on/off ratio of 13 887 and responsivity of 47.5 A W-1. The device also displays long-term stability in a damp condition for up to 12 h. Moreover, a pulse monitoring sensor based on the perovskite films array demonstrates stable monitoring for pulse signals after being worn for 12 h and with a low illumination of 0.055 mW cm-2, highlighting the potential application in wearable optoelectronic devices.

2.
Front Cell Infect Microbiol ; 14: 1337223, 2024.
Article in English | MEDLINE | ID: mdl-38404291

ABSTRACT

Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver that is mediated by autoimmunity and has complex pathogenesis. Its prevalence has increased globally. Since the liver is the first organ to be exposed to harmful substances, such as gut-derived intestinal microbiota and its metabolites, gut health is closely related to liver health, and the "liver-gut axis" allows abnormalities in the gut microbiota to influence the development of liver-related diseases such as AIH. Changes in the composition of the intestinal microbiota and its resultant disruption of the intestinal barrier and microbial transport are involved in multiple ways in the disruption of immune homeostasis and inflammation, thereby influencing the development of AIH. In terms of the mechanisms involved in immune, the gut microbiota or its metabolites, which is decreased in secondary bile acids, short-chain fatty acids (SCFAs), and polyamines, and increased in lipopolysaccharide (LPS), branched-chain amino acids (BCAA), tryptophan metabolite, amino acid, and bile acid, can disrupt immune homeostasis by activating various immune cells and immune-related signaling pathways, resulting in aberrant activation of the immune system. Clarifying this mechanism has significant clinical implications for the treatment of AIH with drugs that target intestinal microbiota and related signaling pathways. Therefore, this narrative review summarizes the progress in exploring the involvement of gut microbiota in the pathogenesis of AIH, with the aim of helping to improve the precise targeting of therapeutic treatments against AIH for the benefit of clinical AIH treatment.


Subject(s)
Gastrointestinal Microbiome , Hepatitis, Autoimmune , Liver Diseases , Humans , Hepatitis, Autoimmune/etiology , Immune System , Bile Acids and Salts
3.
J Clin Med ; 13(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38256485

ABSTRACT

BACKGROUND: The study aimed to investigate the clinical value and prognostic patterns of the neutrophil-to-lymphocyte ratio (NLR) and imaging tumor capsule (ITC) in solitary hepatocellular carcinoma (HCC) patients undergoing narrow-margin hepatectomy. METHODS: Data for solitary HCC patients treated with narrow-margin surgery were extracted from Shanghai General Hospital. Clinical features of recurrence-free survival (RFS), overall survival (OS), and early recurrence were investigated by Cox/logistic regression. The significant variables were subsequently incorporated into the nomogram pattern. Survival analysis stratified by NLR and ITC was also performed. RESULTS: The study included a cohort of 222 patients, with median RFS and OS of 24.083 and 32.283 months, respectively. Both an NLR ≥ 2.80 and incomplete ITC had a significant impact on prognosis. NLR and ITC independently affected RFS and OS, whereas alpha-fetoprotein (AFP) and ITC were identified as independent factors for early relapse. The RFS and OS nomogram, generated based on the Cox model, demonstrated good performance in validation. The combination of NLR and ITC showed greater predictive accuracy for 5-year RFS and OS. Subgroups with an NLR ≥ 2.80 and incomplete ITC had the worst prognosis. CONCLUSIONS: Both NLR and ITC significantly affected RFS, OS, and early recurrence among solitary HCC patients who underwent narrow-margin hepatectomy. The combination of NLR and ITC has the potential to guide rational clinical treatment and determine the prognosis.

4.
Cancer Rep (Hoboken) ; 6(12): e1904, 2023 12.
Article in English | MEDLINE | ID: mdl-37885090

ABSTRACT

BACKGROUND: Cuproptosis has been studied in various aspects as a new form of cell death. AIMS: We hope to explore the molecular patterns and genes related to cuproptosis in evaluating and predicting the prognosis of hepatocellular carcinoma (HCC), as well as the impact of tumor immune microenvironment. METHODS AND RESULTS: Sixteen cuproptosis related gene (CRGs) and cuproptosis related molecular and gene characteristics were comprehensively analyzed from 492 HCC samples. Cuproptosis related molecular patterns were generated by consensus clustering algorithm, including cuproptosis clusters, cuproptosis gene clusters (CGC) and cuproptosis score (CS). The characteristics of tumor microenvironment (TME) and tumor immune cells were described by the ssGSEA and ESTIMATE algorithms. Cuproptosis score was established to assess the clinical characteristics, prognostic and immunotherapy. The role and mechanism of CRG (ATP7A) in HCC, as well as its relationship with TME and immune checkpoints, have been further explored. The results of somatic mutation, copy number variations (CNV), and CRGs expression in HCC suggested the CRGs might participate in the HCC oncogenesis. The cuproptosis clusters were closely related to the clinical pathological characteristics, biological processes, and prognosis of HCC. The three CGC was revealed to be consistent with the three immune infiltration characterizations, including immune-high, immune-mid, and immune-low subtypes. Higher CS was characterized by decreased TMB, activated immunity, higher immune cell proportion score (IPS) and better overall survival (OS), which indicated higher CS was immune-high type and with better treatment effect and prognosis. The ATP7A had the highest hazard ratio (HR = 1.465, p < .001), was high expression in HCC tissues and with a shorter 5-year OS. Knocking down ATP7A could enhance intracellular copper concentration, cause a decrease in DLAT expression, and induce cuproptosis and inhibit cell proliferation and migration. ATP7A was also positively correlated with most cancer immune cells and immune checkpoints. CONCLUSION: Taken together, this research revealed the cuproptosis related molecular patterns and genes associated with the clinical pathological characteristics, TME phenotype and prognosis of HCC. The CS will further deepen our understanding of the TME characteristics of HCC, and the involvement of ATP7A in cuproptosis will provide new ideas for predicting HCC prognosis and immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , DNA Copy Number Variations , Tumor Microenvironment/genetics , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Algorithms , Copper-Transporting ATPases , Peptide Fragments
5.
Front Oncol ; 13: 1159126, 2023.
Article in English | MEDLINE | ID: mdl-37746284

ABSTRACT

Background: The correlations between cuproptosis and long noncoding RNAs (lncRNAs) with the tumor microenvironment (TME), immunotherapy, and some other characteristics of hepatocellular carcinoma (HCC) remain unclear. Methods: Sixteen cuproptosis regulators and 356 cuproptosis-related lncRNAs (CRLnc) were identified from 374 HCC profiles in The Cancer Genome Atlas (TCGA) database. Six differentially expressed CRLnc were selected, and a prognostic risk model based on the CRLnc signature (CRLncSig) was constructed. The prognostic power of the model was verified. Moreover, a cuproptosis-related gene cluster (CRGC) was generated based on six lncRNAs and differentially expressed genes. The relationship between immune cell infiltration in the TME, immunotherapy, CRLncSig, and CRGC was demonstrated through various algorithms, Tumor Immune Dysfunction and Exclusion (TIDE), tumor mutational burden (TMB), etc. Potential drugs and sensitivity to those agents were evaluated for the risk model. LncRNA AL158166.1 was selected and verified in HCC tissues and cell lines, the impact of its knockdown and overexpression in HCC cells was examined, and the copper (Cu) concentration and the cuproptosis-related gene expression were detected. Results: A CRLncSig prognostic risk model with good predictive ability was constructed. The low-risk group had a longer overall survival (OS), lower tumor purity, more extensive immune cell infiltration, higher immune score, enrichment in immune-activated pathways, and more positive response to immunotherapy versus the high-risk group. CRGC-B exhibited the best OS and the lowest tumor stage; the immune cell infiltration analysis was similar to the low-risk group in CRLncSig. CRGC-B belonged to the "immune-high" group of the TME. The low-risk group had a higher TIDE score and susceptibility to antitumor drugs. The lncRNA AL158166.1 had the highest hazard ratio. The levels of AL158166.1 were higher in HCC tissues versus healthy tissues. Knockdown of AL158166.1 could lead to an increase in intracellular Cu concentration, induce DLAT low expression, and inhibit the proliferation and migration of HCC cells, whereas overexpression of AL158166.1 exerted the reverse effect. Conclusion: Overall, a new CRLncSig prognostic risk model and a cuproptosis-related molecular signature were constructed and evaluated. The model and signature were associated with the prognosis, immune infiltration, and immunotherapy of HCC. Inhibiting the lncRNA AL158166.1 may induce cuproptosis and showed potential for the inhibition of tumors. Evaluation of the CRLnc, CRLncSig, and CRGC may enhance our understanding of the TME, determine the effectiveness of immunotherapy, and act as a marker for the prognosis of HCC.

6.
Nanoscale Horiz ; 8(8): 1014-1033, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37337833

ABSTRACT

Metal halide perovskites are considered promising materials for next-generation optoelectronic devices due to their excellent optoelectronic performances and simple solution preparation process. Precise micro/nano-scale patterning techniques enable perovskite materials to be used for array integration of photodetectors. In this review, the device types of perovskite-based photodetectors are introduced and the structural characteristics and corresponding device performances are analyzed. Then, the typical construction methods suitable for the fabrication of perovskite photodetector arrays are highlighted, including surface treatment technology, template-assisted construction, inkjet printing technology, and modified photolithography. Furthermore, the current development trends and their applications in image sensing of perovskite photodetector arrays are summarized. Finally, major challenges are presented to guide the development of perovskite photodetector arrays.

7.
Small Methods ; 7(9): e2300339, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37199230

ABSTRACT

Metal halide perovskite photodetector arrays have demonstrated great potential applications in the field of integrated systems, optical communications, and health monitoring. However, the fabrication of large-scale and high-resolution device is still challenging due to their incompatibility with the polar solvents. Here, a universal fabrication strategy that utilizes ultrathin encapsulation-assisted photolithography and etching to create high-resolution photodetectors array with vertical crossbar structure is reported. This approach yields a 48 × 48 photodetector array with a resolution of 317 ppi. The device shows good imaging capability with a high on/off ratio of 3.3 × 105 and long-term working stability over 12 h. Furthermore, this strategy can be applied to five different material systems, and is fully compatible with the existing photolithography and etching techniques, which are expected to have potential applications in the other high-density and solvent-sensitive devices array, including perovskite- or organic semiconductor-based memristor, light emitting diode displays, and transistors.

8.
Small ; 19(27): e2300364, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36987976

ABSTRACT

Cesium copper halide perovskite is one of the promising materials for solar-blind light detection. However, most of the cesium copper halide perovskite-based photodetectors (PDs) are focused on ultraviolet A detection and realized on the rigid substrate in the single device configuration. Here, a flexible solar-blind PDs array (10 × 10 pixels) based on the CsCu2 I3 film patterns for ultraweak light sensing and light distribution imaging is reported. Large-scale CsCu2 I3 film arrays are synthesized with various shapes and uniform dimensions through a simple vacuum-heating-assisted solution method. Benefiting from excellent air stability and superior resistance to the photodegrading of the CsCu2 I3 film, the array device exhibits long-term stable photoswitching behavior for 8 h and ultralow light detection capability to resolve the light intensity of 6.1 nW cm-2 with a high responsivity of 62 A W-1 , and the array device can acquire clear images of "G", "X", and "U" showing the input light distribution. Moreover, the flame detection and warning system based on a curved solar-blind PDs array is demonstrated, which can be used for multi-flame monitoring and locating. These results can encourage potential applications of the CsCu2 I3 film-based PDs array in the field of optical communication and environment monitoring.

9.
Hum Cell ; 36(2): 712-724, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36520346

ABSTRACT

RNA modification serves as a kind of posttranscriptional modification. Besides N6-methyladenosine (m6A), 5-methylcytosine(m5C) is also an important RNA modification. Long non-coding RNAs (lncRNAs) play an important role in tumor progression. Thus, we performed bioinformatic analysis to establish a m5C-related lncRNA signature(m5ClncSig) for hepatocellular carcinoma (HCC). The RNA sequencing data and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. Pearson correlation coefficient analysis was applied to conduct m5C-related genes and m5C-related lncRNAs co-expressing network. Univariate Cox regression was used to screen the m5C-related lncRNAs with prognosis value. LASSO regression was applied to establish m5ClncSig. Functional analysis including KEGG and GO were performed. The relation between m5ClncSig and immunity was assessed by CIBERSORT and ESTIMATE. RP11-498C9.15 was selected for in vitro validation. A m5ClncSig was established containing 8 lncRNAs with significantly prognosis value. According to risk score calculated by m5ClncSig, high-risk group had worse clinical outcomes than low-risk group. The risk score was validated as an independent prognosis factor. Moreover, the abundances of 11 types of immune cells were significantly different between high-risk group and low-risk group while 8 immune-related genes expressed differently between these two groups. RP11-498C9.15 was validated as a risk factor in HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Risk Factors
10.
J Oncol ; 2022: 3090523, 2022.
Article in English | MEDLINE | ID: mdl-36072979

ABSTRACT

Background: Long noncoding RNAs (lncRNAs) are found to be novel biomarkers for hepatocellular carcinoma (HCC) and play an important role in tumor progression. We established a genomic instability-related long noncoding RNA signature (GIlncSig) as an independent prognosis factor and also investigated its impact on prognosis significance. Method: Somatic mutation profiles, clinical characteristics, and RNA sequencing data were obtained from The Cancer Genome Atlas (TCGA) database. Lasso regression was used to construct GIlncSig. KEGG was used to identify the possible biological pathways. ESTIMATE and CIBERSORT algorithms were used to calculate the immune microenvironment scores and proportion of immune cells in HCC patients. The expression of LINC00501 was conducted by qRT-PCR. Cell proliferation was measured by EdU, CCK-8, and colony formation assay, and cell migration and invasion ability were measured by wound healing and transwell assay. Results: 135 genomic instability-related lncRNAs were identified, and GIlncSig was constructed using 13 independent lncRNAs with significant prognosis values. Based on the GIlncSig, high-risk group had worse clinical outcomes than low-risk group, while high-risk group also had higher UBQLN4, KRAS, ARID1A, and PIK3CA expression. Moreover, the efficiency of GIlncSig combining single-gene mutation was higher than single-gene mutation alone such as TP53. The results of CIBERSORT and ESTIMATE showed that GS group and GU group had significantly different immune infiltration. In addition, LINC00501 was identified as a potential biomarker in HCC with strong relationship with clinical characteristics. In vitro assays validated that LINC00501 promoted proliferation and migration of HCC cell lines. Conclusion: Our results showed that GIlncSig serves as a potential independent prognosis factor to predict HCC patients' prognosis for exploring potential mechanism and therapy strategy. Besides, LINC00501 plays an important role in the progression of HCC, which may be a potential therapy target.

11.
Cell Cycle ; 20(18): 1875-1889, 2021 09.
Article in English | MEDLINE | ID: mdl-34382920

ABSTRACT

Rhophilin Rho GTPase binding protein 2 (P76RBE) belongs to rhophilin family of Rho-GTPase-binding proteins and is found to contribute to the development of diverse cancers. Data in Oncomine and Kaplan-Meier Plotter databases showed that P76RBE was upregulated in ovarian cancer tissues compared with normal tissues, and patients with high P76RBE expression had worse overall survival, which indicated P76RBE may be associated with the pathogenesis of ovarian cancer. This study aimed to investigate the role of P76RBE in ovarian cancer and to reveal the possible underlying mechanisms. The results demonstrated that P76RBE was highly expressed in ovarian cancer tissues and ovarian cancer cell lines. Functionally, silencing of P76RBE suppressed the proliferation, induced cell cycle arrest, and inhibited migration and invasion in OVCAR-3 and OV-90 cells, while overexpression of P76RBE showed opposite effects on A2780 cells. Mechanically, P76RBE silencing resulted in downregulation of integrin ß1, accompanying the reduced NF-κB p65 phosphorylation and nuclear translocation. Importantly, integrin ß1 knockdown effectively rescued the effects of P76RBE overexpression on ovarian cancer cells with suppressed proliferation, migration, and invasion. Additionally, in the xenograft tumors derived from OVCAR-3 and OV-90 cell lines, P76RBE knockdown inhibited tumor growth. Meanwhile, the expression of integrin ß1 and NF-κB p65 phosphorylation was decreased. In summary, our findings indicate that P76RBE contributes to the progression of ovarian cancer through regulating the integrin ß1/NF-κB signaling, and it may be a promising target for ovarian cancer therapy.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Gene Silencing , Integrin beta1/metabolism , NF-kappa B/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Signal Transduction/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Neoplasm Invasiveness/genetics , Transfection/methods , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods
12.
Front Oncol ; 11: 644840, 2021.
Article in English | MEDLINE | ID: mdl-33869039

ABSTRACT

Ovarian cancer is considered as one of the most fatal gynecologic malignancies. This work aimed to explore the effects and regulatory mechanism of Acyl-CoA medium-chain synthetase-3 (ACSM3, a subunit of CoA ligases) in ovarian cancer progression. As well as employing CCK-8 assay, clone formation assay, and cell cycle analysis were carried out to investigate cell proliferation ability. Wound healing assay and transwell assay were subsequently used to assess cell migration and invasion. Mice xenografts were then conducted to measure the effects of ACSM3 on tumor development in vivo. Our bioinformatics analysis suggested that the expression of ACSM3 was down-regulated in ovarian cancer tissues, and the low expression level of ACSM3 might related with poorer overall survival than high mRNA expression of ACSM3 in ovarian cancer patients. We artificially regulated the expression of ACSM3 to evaluate its effects on ovarian cancer malignant phenotypes. Our data revealed that the overexpression of ACSM3 inhibited cell proliferation, migration, and invasion of ovarian cancer cells. In contrast, the knock-down of ACSM3 received the opposite results. Our western blot results showed that the Integrin ß1/AKT signaling pathway was negatively regulated by ACSM3 expression. Moreover, ACSM3 overexpression-induced suppression of cell migration and invasion activities were abolished by the overexpression of ITG ß1 (Integrin ß1). Additionally, the growth of ovarian cancer xenograft tumors was also repressed by the overexpression of ACSM3. And ACSM3 interference obtained the contrary effects in vivo. In summary, ACSM3 acts as a tumor suppressor gene and may be a potential therapeutic target of ovarian cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...