Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Ageing Res Rev ; 99: 102376, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972601

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) among elderly individuals poses a significant global health concern due to the increasing ageing population. METHODS: We searched PubMed, Cochrane Library, and Embase from database inception to Feb 1, 2024. Studies performed in inpatient settings reporting in-hospital mortality of elderly people (≥60 years) with TBI and/or identifying risk factors predictive of such outcomes, were included. Data were extracted from published reports, in-hospital mortality as our main outcome was synthesized in the form of rates, and risk factors predicting in-hospital mortality was synthesized in the form of odds ratios. Subgroup analyses, meta-regression and dose-response meta-analysis were used in our analyses. FINDINGS: We included 105 studies covering 2217,964 patients from 30 countries/regions. The overall in-hospital mortality of elderly patients with TBI was 16 % (95 % CI 15 %-17 %) from 70 studies. In-hospital mortality was 5 % (95 % CI, 3 %-7 %), 18 % (95 % CI, 12 %-24 %), 65 % (95 % CI, 59 %-70 %) for mild, moderate and severe subgroups from 10, 7, and 23 studies, respectively. A decrease in in-hospital mortality over years was observed in overall (1981-2022) and in severe (1986-2022) elderly patients with TBI. Older age 1.69 (95 % CI, 1.58-1.82, P < 0.001), male gender 1.34 (95 % CI, 1.25-1.42, P < 0.001), clinical conditions including traffic-related cause of injury 1.22 (95 % CI, 1.02-1.45, P = 0.029), GCS moderate (GCS 9-12 compared to GCS 13-15) 4.33 (95 % CI, 3.13-5.99, P < 0.001), GCS severe (GCS 3-8 compared to GCS 13-15) 23.09 (95 % CI, 13.80-38.63, P < 0.001), abnormal pupillary light reflex 3.22 (95 % CI, 2.09-4.96, P < 0.001), hypotension after injury 2.88 (95 % CI, 1.06-7.81, P = 0.038), polytrauma 2.31 (95 % CI, 2.03-2.62, P < 0.001), surgical intervention 2.21 (95 % CI, 1.22-4.01, P = 0.009), pre-injury health conditions including pre-injury comorbidity 1.52 (95 % CI, 1.24-1.86, P = 0.0020), and pre-injury anti-thrombotic therapy 1.51 (95 % CI, 1.23-1.84, P < 0.001) were related to higher in-hospital mortality in elderly patients with TBI. Subgroup analyses according to multiple types of anti-thrombotic drugs with at least two included studies showed that anticoagulant therapy 1.70 (95 % CI, 1.04-2.76, P = 0.032), Warfarin 2.26 (95 % CI, 2.05-2.51, P < 0.001), DOACs 1.99 (95 % CI, 1.43-2.76, P < 0.001) were related to elevated mortality. Dose-response meta-analysis of age found an odds ratio of 1.029 (95 % CI, 1.024-1.034, P < 0.001) for every 1-year increase in age on in-hospital mortality. CONCLUSIONS: In the field of elderly patients with TBI, the overall in-hospital mortality and its temporal-spatial feature, the subgroup in-hospital mortalities according to injury severity, and dose-response meta-analysis of age were firstly comprehensively summarized. Substantial key risk factors, including the ones previously not elucidated, were identified. Our study is thus of help in underlining the importance of treating elderly TBI, providing useful information for healthcare providers, and initiating future management guidelines. This work underscores the necessity of integrating elderly TBI treatment and management into broader health strategies to address the challenges posed by the aging global population. REVIEW REGISTRATION: PROSPERO CRD42022323231.

2.
iScience ; 27(4): 109435, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38523796

ABSTRACT

Both therapeutic hypothermia and neural stem cells (NSCs) transplantation have shown promise in neuroprotection and neural repair after brain injury. However, the effects of therapeutic hypothermia on neuronal differentiation of NSCs are not elucidated. In this study, we aimed to investigate whether mild hypothermia promoted neuronal differentiation in cultured and transplanted human NSCs (hNSCs). A significant increase in neuronal differentiation rate of hNSCs was found when exposed to 35°C, from 33% to 45% in vitro and from 7% to 15% in vivo. Additionally, single-cell RNA sequencing identified upregulation of RNA-binding motif protein 3 (RBM3) in neuroblast at 35°C, which stabilized the SRY-box transcription factor 11 (SOX11) mRNA and increased its protein expression, leading to an increase in neuronal differentiation of hNSCs. In conclusion, our study highlights that mild hypothermia at 35°C enhances hNSCs-induced neurogenesis through the novel RBM3-SOX11 signaling pathway, and provides a potential treatment strategy in brain disorders.

3.
J Clin Med ; 11(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35628836

ABSTRACT

BACKGROUND: After a traumatic brain injury (TBI), the cell environment is dramatically changed, which has various influences on grafted neural stem cells (NSCs). At present, these influences on NSCs have not been fully elucidated, which hinders the finding of an optimal timepoint for NSC transplantation. METHODS: Brain extracts of TBI mice were used in vitro to simulate the different phase TBI influences on the differentiation of human NSCs. Protein profiles of brain extracts were analyzed. Neuronal differentiation and the activation of autophagy and the WNT/CTNNB pathway were detected after brain extract treatment. RESULTS: Under subacute TBI brain extract conditions, the neuronal differentiation of hNSCs was significantly higher than that under acute brain extract conditions. The autophagy flux and WNT/CTNNB pathway were activated more highly within the subacute brain extract than in the acute brain extract. Autophagy activation by rapamycin could rescue the neuronal differentiation of hNSCs within acute TBI brain extract. CONCLUSIONS: The subacute phase around 7 days after TBI in mice could be a candidate timepoint to encourage more neuronal differentiation after transplantation. The autophagy flux played a critical role in regulating neuronal differentiation of hNSCs and could serve as a potential target to improve the efficacy of transplantation in the early phase.

4.
Sci Rep ; 12(1): 6736, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35468979

ABSTRACT

Moderate leaf rolling helps to form the ideotype of rice. In this study, six independent OsRUS1-GFP overexpression (OsRUS1-OX) transgenic rice lines with rapid and dynamic leaf rolling phenotype in response to sunlight were constructed. However, the mechanism is unknown. Here, RNA-Seq approach was utilized to identify differentially expressed genes between flag leaves of OsRUS1-OX and wildtype under sunlight. 2920 genes were differentially expressed between OsRUS1-OX and WT, of which 1660 upregulated and 1260 downregulated. Six of the 16 genes in GO: 0009415 (response to water stimulus) were significantly upregulated in OsRUS1-OX. The differentially expressed genes between WT and OsRUS1-OX were assigned to 110 KEGG pathways. 42 of the 222 genes in KEGG pathway dosa04075 (Plant hormone signal transduction) were differentially expressed between WT and OsRUS1-OX. The identified genes in GO:0009415 and KEGG pathway dosa04075 were good candidates to explain the leaf rolling phenotype of OsRUS1-OX. The expression patterns of the 15 genes identified by RNA-Seq were verified by qRT-PCR. Based on transcriptomic and qRT-PCR analysis, a mechanism for the leaf rolling phenotype of OsRUS1-OX was proposed. The differential expression profiles between WT and OsRUS1-OX established by this study provide important insights into the molecular mechanism behind the leaf rolling phenotype of OsRUS1-OX.


Subject(s)
Oryza , Gene Expression Profiling , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Transcriptome
5.
Mol Neurobiol ; 59(6): 3665-3677, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35362812

ABSTRACT

Direct current electric field (DCEF) steers the migration of various neural cells. Microglia, as macrophage of the central nervous system (CNS), however, have not been reported to engage in electrotaxis. Here, we applied electric fields to an in vitro environment and found directional migration of BV2 microglia toward the cathode, in a DCEF strength-dependent manner. Transcriptome analysis then revealed significant changes in the mitogen-activated protein kinase cascades. In terms of mechanism, DCEF coordinated microglia movement by regulating the ERK/GSK3ß/cofilin signaling pathway, and PMA (protein kinase C activator) reversed cell migration through intervention of the ERK/GSK3ß/cofilin axis. Meanwhile, LiCl (GSK3ß inhibitor) showed similar functions to PMA in the electrotaxis of microglia. Furthermore, pharmacological and genetic suppression of GSK3ß or cofilin also modulated microglia directional migration under DCEF. Collectively, we discovered the electrotaxis of BV2 microglia and the essential role of the ERK/GSK3ß/cofilin axis in regulating cell migration via modulation of F-actin redistribution. This research highlights new insight toward mediating BV2 directional migration and provides potential direction for novel therapeutic strategies of CNS diseases.


Subject(s)
Actin Depolymerizing Factors , Microglia , Cell Movement/physiology , Glycogen Synthase Kinase 3 beta , Signal Transduction
6.
Front Surg ; 9: 856743, 2022.
Article in English | MEDLINE | ID: mdl-35388364

ABSTRACT

Introduction: At present, lots of studies have discussed the effects and outcomes of cranioplasty using polyetheretherketone (PEEK). However, interventions or management for PEEK cranioplasty got less attention. This article presented a perioperative paradigm for preventing postoperative complications. Materials and Methods: Modified PEEK plates with certified safety were implanted in patients who received evolving perioperative paradigm. Serial perioperative managements were developed as a comprehensive paradigm to prevent correlated risk factors of postoperative complications, which mainly included managements of epidural collections and wound healing. The preparation of the surgical area and systemic state were essential before surgery. During the operation, the blood supply of the incision and the handling of dura and temporalis were highlighted in our paradigm. After cranioplasty, management of subcutaneous drainage and wound healing were stressed. Patients received conventional management from February 2017 to August 2018 in our center. After the evolving paradigm developed, patients received comprehensive perioperative management from September 2018 to August 2020. Results: A total of 104 patients who underwent PEEK cranioplasty were consecutively enrolled; 38 (36.5%) received conventional perioperative management, and 66 (63.5%) received evolving perioperative paradigm. The general information of the two groups was comparable. Notably, patients who received the evolving paradigm presented a significantly decreased incidence of postoperative complications from 47.4 to 18.2% (P < 0.01), among which the incidences of subcutaneous effusion, epidural hematoma, and subcutaneous infection decreased significantly. Conclusion: The evolving perioperative paradigm could effectively prevent risk factors and reduce related complications. It was valuable to promote these comprehensive managements and inspire more clinical practice on improving patients' outcomes after PEEK cranioplasty.

7.
J Neurotrauma ; 39(11-12): 850-859, 2022 06.
Article in English | MEDLINE | ID: mdl-35171687

ABSTRACT

Increasing traumatic brain injury (TBI) among older adults constitutes a substantial socioeconomic burden, in step with the growing aging global population. Here, we aimed to investigate the profile of geriatric TBI in the CENTER-TBI China registry, a prospective observational study conducted in 56 centers of 22 provinces across China. Patients admitted to the hospital with a clinical diagnosis of TBI were enrolled in the study. Data on demographic characteristics, injury, clinical features, treatments, and survival at discharge were collected and assessed. The primary end point was survival state at discharge. We analyzed a total of 2415 patients aged ≥65 years, accounting for 18.34% of the overall population. The median age was 72 years (interquartile range [IQR]: 68-78), and 1588 (65.76%) were men. Incidental falls (n = 1044, 43.23%) were the leading cause of TBI, followed by road traffic injuries (n = 1034, 42.82%). Roads and homes were the main sites of injury. The median Glasgow Coma Scale (GCS) score was 13 (IQR: 9-15); 1397 (57.85%) patients had mild TBI (GCS 13-15), while 530 (21.95%) and 488 (20.21%) presented with moderate (GCS 9-12) and severe TBI (sTBI; GCS 3-8), respectively. A total of 546 (22.61%) patients underwent intracranial surgery. The overall in-hospital mortality rate was 8.24% (n = 199), and most survivors were transferred home. This study revealed that the demographic patterns and injury mechanisms are changing among elderly patients with TBI in China. More attention should be given to the high incidence of geriatric TBI to improve prevention and management strategies.


Subject(s)
Brain Injuries, Traumatic , Aged , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/therapy , China/epidemiology , Female , Glasgow Coma Scale , Hospitalization , Humans , Male , Prospective Studies
8.
J Vis Exp ; (171)2021 05 11.
Article in English | MEDLINE | ID: mdl-34057442

ABSTRACT

Intra-abdominal pressure (IAP) is increasingly being recognized as an indispensable and significant physiological parameter in intensive care units (ICU). IAP has been measured in a variety of ways with the development of many techniques in recent years. The level of intra-abdominal pressure under normal conditions is generally equal to or less than 12 mmHg. Accordingly, abdominal hypertension (IAH) is defined as two consecutive IAP measurements higher than 12 mmHg within 4-6 h. When IAH deteriorates further with IAP higher than 20 mmHg along with organ dysfunction and/or failure, this clinical manifestation can be diagnosed as abdominal compartment syndrome (ACS). IAH and ACS are associated with gastrointestinal ischemia, acute renal failure, and lung injury, leading to severe morbidity and mortality. Elevated IAP and IAH may affect the cerebral venous return and outflow of the cerebrospinal fluid by increasing the intrathoracic pressure (ITP), ultimately leading to increased intracranial pressure (ICP). Therefore, it is essential to monitor IAP in critically ill patients. The reproducibility and accuracy of intra-bladder pressure (IBP) measurements in previous studies need to be further improved, although the indirect measurement of IAP is now a widely used technique. To address these limitations, we recently used a set of IAP monitoring systems with advantages of convenience, continuous monitoring, digital visualization, and long-term IAP recording and data storage in critically ill patients. This IAP monitoring system can detect intra-abdominal hypertension and potentially analyze clinical status in real time. The recorded IAP data and other physiological indicators, such as intracranial pressure, can be further used for correlation analysis to guide treatment and predict a patient's possible prognosis.


Subject(s)
Critical Illness , Intra-Abdominal Hypertension , Abdomen , Humans , Intensive Care Units , Intra-Abdominal Hypertension/diagnosis , Reproducibility of Results
9.
BMC Plant Biol ; 21(1): 232, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34034658

ABSTRACT

BACKGROUND: The Arabidopsis RUS (ROOT UV-B SENSITIVE) gene family contains six members, each of which encodes a protein containing a DUF647 (domain of unknown function 647) that is commonly found in eukaryotes. Previous studies have demonstrated that RUS1 and RUS2 play critical roles in early seedling development. All six RUS genes are expressed throughout the plant, but little is known about the functional roles of RUS3, RUS4, RUS5 and RUS6. RESULTS: We used a reverse-genetic approach to identify knockout mutants for RUS3, RUS4, RUS5 and RUS6. Each mutant was confirmed by direct DNA sequencing and genetic segregation analysis. No visible phenotypic differences were observed in rus3, rus4, or rus5 knockout mutants under standard growth conditions, but rus6 knockout mutants displayed a strong embryo-lethal phenotype. Two independent knockout lines for RUS6 were characterized. The rus6 mutations could only be maintained through a heterozygote, because rus6 homozygous mutants did not survive. Closer examinations of homozygous rus6 embryos from rus6/ + parent plants revealed that RUS6 is required for early embryo development. Loss of RUS6 resulted in embryo lethality, specifically at the mid-globular stage. The embryo-lethality phenotype was complemented by a RUS6::RUS6-GFP transgene, and GFP signal was detected throughout the embryo. Histological analyses with the ß-glucuronidase reporter gene driven by the RUS6 promoter showed tissue- and development-specific expression of RUS6, which was highest in floral tissues. CONCLUSION: Our data revealed that RUS6 is essential for early embryo development in Arabidopsis, and that the RUS gene family functions in multiple stages of plant development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Arabidopsis/embryology , Arabidopsis Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Phenotype , Promoter Regions, Genetic/genetics
10.
Mol Biotechnol ; 63(3): 221-231, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33439452

ABSTRACT

Gene fragment swapping and site-directed mutagenesis are commonly required in dissecting functions of gene domains. While there are many approaches for seamless fusion of different gene fragments, new methods are yet to be developed to offer higher efficiency, better simplicity, and more affordability. In this study, we showed that in most cases overlap-PCR was highly effective in creating site-directed mutagenesis, gene fragment deletion, and substitutions using RUS1 and RUS2 as example. While for cases where the overlap-PCR approach is not feasible due to complex secondary structure of gene fragments, a unique restriction site can be generated at the overlapped region of the primers through synonymous mutations. Then different gene fragments can be seamlessly fused through traditional restriction digestion and subsequent ligation. In conclusion, while the classical overlap-PCR is not feasible, the modified overlap-PCR approaches can provide effective and alternative ways to seamlessly fuse different gene fragments.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Artificial Gene Fusion/methods , Amino Acid Substitution , Arabidopsis/chemistry , Arabidopsis Proteins/chemistry , DNA Restriction Enzymes/metabolism , DNA, Plant/chemistry , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Polymerase Chain Reaction/methods , Sequence Deletion
11.
CBE Life Sci Educ ; 18(3): ar47, 2019 09.
Article in English | MEDLINE | ID: mdl-31469624

ABSTRACT

Instructor Talk-noncontent language used by instructors in classrooms-is a recently defined and promising variable for better understanding classroom dynamics. Having previously characterized the Instructor Talk framework within the context of a single course, we present here our results surrounding the applicability of the Instructor Talk framework to noncontent language used by instructors in novel course contexts. We analyzed Instructor Talk in eight additional biology courses in their entirety and in 61 biology courses using an emergent sampling strategy. We observed widespread use of Instructor Talk with variation in the amount and category type used. The vast majority of Instructor Talk could be characterized using the originally published Instructor Talk framework, suggesting the robustness of this framework. Additionally, a new form of Instructor Talk-Negatively Phrased Instructor Talk, language that may discourage students or distract from the learning process-was detected in these novel course contexts. Finally, the emergent sampling strategy described here may allow investigation of Instructor Talk in even larger numbers of courses across institutions and disciplines. Given its widespread use, potential influence on students in learning environments, and ability to be sampled, Instructor Talk may be a key variable to consider in future research on teaching and learning in higher education.


Subject(s)
Biology/education , Faculty , Teaching , Curriculum , Data Collection , Humans , Learning , Students
12.
J Cancer ; 10(16): 3757-3766, 2019.
Article in English | MEDLINE | ID: mdl-31333793

ABSTRACT

Background: Preoperative serum tumor markers have been widely used to predict prognosis in stage II and III colorectal cancer (CRC). However, few previous studies addressed the effect of increased preoperative numbers of tumor markers. Methods: Patients with stage II and III CRC who underwent curative resection were included from January 2009 to October 2015. The relationship between serum tumor markers and clinicopathological parameters was analyzed. DFS and OS were compared in stage II and III CRC. Results: The median follow-up was 45 months. In this study, 735 enrolled patients were assessed based on the numbers of increased tumor markers. We found that these increased tumor markers were closely associated with clinical stage, T stage, N stage, tumor location, pathology type, differentiation, lymphatic invasion and vascular invasion (all p values < 0.05). Furthermore, the number of increased tumor markers directly affected the survival of patients with CRC after curative surgery. The 3-year DFS and OS of patients with a score of 0 were 84.0% and 91.0%, respectively, which are much higher than those of patients with a score of 4 (42.9% and 37.8%, respectively) (p < 0.05). The 5-year DFS and OS of patients with a score of 0 were 75.9% and 77.9%, respectively, which are much higher than those of patients with a score of 4 (31.7% and 23.6%, respectively). Interestingly, our results suggested that stage III CRC patients with a score of 0 had longer DFS and OS times than stage II patients with scores of 3 and 4. Further analysis revealed statistically significant differences in OS (p < 0.05) but not in DFS. Conclusions: The number of increased tumor markers could significantly predict prognosis in stage II and III CRC. In addition, these increased tumor markers had direct impacts on metastasis as well as the recurrence status and survival time of stage II and III CRC patients.

13.
Mol Plant ; 12(2): 199-214, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30639120

ABSTRACT

Over the past few years, three photorespiratory bypasses have been introduced into plants, two of which led to observable increases in photosynthesis and biomass yield. However, most of the experiments were carried out using Arabidopsis under controlled environmental conditions, and the increases were only observed under low-light and short-day conditions. In this study, we designed a new photorespiratory bypass (called GOC bypass), characterized by no reducing equivalents being produced during a complete oxidation of glycolate into CO2 catalyzed by three rice-self-originating enzymes, i.e., glycolate oxidase, oxalate oxidase, and catalase. We successfully established this bypass in rice chloroplasts using a multi-gene assembly and transformation system. Transgenic rice plants carrying GOC bypass (GOC plants) showed significant increases in photosynthesis efficiency, biomass yield, and nitrogen content, as well as several other CO2-enriched phenotypes under both greenhouse and field conditions. Grain yield of GOC plants varied depending on seeding season and was increased significantly in the spring. We further demonstrated that GOC plants had significant advantages under high-light conditions and that the improvements in GOC plants resulted primarily from a photosynthetic CO2-concentrating effect rather than from improved energy balance. Taken together, our results reveal that engineering a newly designed chloroplastic photorespiratory bypass could increase photosynthetic efficiency and yield of rice plants grown in field conditions, particularly under high light.


Subject(s)
Chloroplasts/metabolism , Chloroplasts/radiation effects , Genetic Engineering , Light , Oryza/cytology , Oryza/genetics , Photosynthesis/genetics , Carbon Dioxide/metabolism , Cell Respiration/genetics , Cell Respiration/radiation effects , Energy Metabolism/genetics , Energy Metabolism/radiation effects , Oryza/metabolism , Oryza/radiation effects , Phenotype , Photosynthesis/radiation effects , Plants, Genetically Modified
14.
PLoS One ; 13(9): e0203889, 2018.
Article in English | MEDLINE | ID: mdl-30208107

ABSTRACT

The active form of vitamin B6, pyridoxal 5'-phosphate (PLP), plays an essential role in the catalytic mechanism of various proteins, including human glutamate-oxaloacetate transaminase (hGOT1), an important enzyme in amino acid metabolism. A recent molecular and genetic study showed that the E266K, R267H, and P300L substitutions in aspartate aminotransferase, the Arabidopsis analog of hGOT1, genetically suppress a developmentally arrested Arabidopsis RUS mutant. Furthermore, CD analyses suggested that the variants exist as apo proteins and implicated a possible role of PLP in the regulation of PLP homeostasis and metabolic pathways. In this work, we assessed the stability of PLP bound to hGOT1 for the three variant and wildtype (WT) proteins using a combined 6 µs of molecular dynamics (MD) simulation. For the variants and WT in the holo form, the MD simulations reproduced the "closed-open" transition needed for substrate binding. This conformational transition was associated with the rearrangement of the P15-R32 small domain loop providing substrate access to the R387/R293 binding motif. We also showed that formation of the dimer interface is essential for PLP affinity to the active site. The position of PLP in the WT binding site was stabilized by a unique hydrogen bond network of the phosphate binding cup, which placed the cofactor for formation of the covalent Schiff base linkage with K259 for catalysis. The amino acid substitutions at positions 266, 267, and 300 reduced the structural correlation between PLP and the protein active site and/or integrity of the dimer interface. Principal component analysis and energy decomposition clearly suggested dimer misalignment and dissociation for the three variants tested in our work. The low affinity of PLP in the hGOT1 variants observed in our computational work provided structural rationale for the possible role of vitamin B6 in regulating metabolic pathways.


Subject(s)
Aspartate Aminotransferase, Cytoplasmic/genetics , Aspartate Aminotransferase, Cytoplasmic/physiology , Pyridoxal Phosphate/metabolism , Amino Acid Substitution/genetics , Aspartate Aminotransferase, Cytoplasmic/ultrastructure , Aspartate Aminotransferases/metabolism , Binding Sites/genetics , Catalysis , Catalytic Domain , Computer Simulation , Dimerization , Glutamates/genetics , Glutamates/physiology , Humans , Models, Molecular , Molecular Dynamics Simulation , Oxaloacetates/metabolism , Principal Component Analysis , Protein Domains/genetics , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/physiology , Vitamin B 6/metabolism
15.
CBE Life Sci Educ ; 17(1)2018.
Article in English | MEDLINE | ID: mdl-29326102

ABSTRACT

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations.


Subject(s)
Biology/education , Program Development , Teaching , Faculty , Goals , Humans , Motivation , Problem-Based Learning , Students , Surveys and Questionnaires
16.
Sci Rep ; 7: 46231, 2017 04 11.
Article in English | MEDLINE | ID: mdl-28397859

ABSTRACT

Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.


Subject(s)
Chloroplast Proteins/metabolism , Oryza/metabolism , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Oryza/genetics , Plants, Genetically Modified , Protein Folding , Protein Sorting Signals , Protein Structure, Tertiary , Protein Transport , Proteolysis , Protoplasts/metabolism , Recombinant Fusion Proteins/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Subcellular Fractions/metabolism
17.
Proc Natl Acad Sci U S A ; 114(12): 3085-3090, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28265087

ABSTRACT

Active-learning pedagogies have been repeatedly demonstrated to produce superior learning gains with large effect sizes compared with lecture-based pedagogies. Shifting large numbers of college science, technology, engineering, and mathematics (STEM) faculty to include any active learning in their teaching may retain and more effectively educate far more students than having a few faculty completely transform their teaching, but the extent to which STEM faculty are changing their teaching methods is unclear. Here, we describe the development and application of the machine-learning-derived algorithm Decibel Analysis for Research in Teaching (DART), which can analyze thousands of hours of STEM course audio recordings quickly, with minimal costs, and without need for human observers. DART analyzes the volume and variance of classroom recordings to predict the quantity of time spent on single voice (e.g., lecture), multiple voice (e.g., pair discussion), and no voice (e.g., clicker question thinking) activities. Applying DART to 1,486 recordings of class sessions from 67 courses, a total of 1,720 h of audio, revealed varied patterns of lecture (single voice) and nonlecture activity (multiple and no voice) use. We also found that there was significantly more use of multiple and no voice strategies in courses for STEM majors compared with courses for non-STEM majors, indicating that DART can be used to compare teaching strategies in different types of courses. Therefore, DART has the potential to systematically inventory the presence of active learning with ∼90% accuracy across thousands of courses in diverse settings with minimal effort.


Subject(s)
Problem-Based Learning/standards , Science/education , Teaching/standards , Humans , Sound , Students , Technology , Universities/standards
18.
Mol Plant ; 9(5): 737-748, 2016 05 02.
Article in English | MEDLINE | ID: mdl-26900141

ABSTRACT

Rapid and dynamic change in hydrogen peroxide (H2O2) levels can serve as an important signal to regulate various biological processes in plants. The change is realized by tilting the balance between its production and scavenging rates, in which membrane-associated NADPH oxidases are known to play a crucial role. Functioning independently from NADPH oxidases, glycolate oxidase (GLO) was recently demonstrated as an alternative source for H2O2 production during both gene-for-gene and non-host resistance in plants. In this study, we show that GLO physically interacts with catalase (CAT) in rice leaves, and that the interaction can be deregulated by salicylic acid (SA). Furthermore, the GLO-mediated H2O2 accumulation is synergistically enhanced by SA. Based on the well-known mechanism of substrate channeling in enzyme complexes, SA-induced H2O2 accumulation likely results from SA-induced GLO-CAT dissociation. In the GLO-CAT complex, GLO-mediated H2O2 production during photorespiration is very high, whereas the affinity of CAT for H2O2 (measured Km ≈ 43 mM) is extraordinarily low. This unique combination can further potentiate the increase in H2O2 when GLO is dissociated from CAT. Taken together, we propose that the physical association-dissociation of GLO and CAT, in response to environmental stress or stimuli, seems to serve as a specific mechanism to modulate H2O2 levels in rice.


Subject(s)
Alcohol Oxidoreductases/metabolism , Catalase/metabolism , Hydrogen Peroxide/metabolism , Oryza/metabolism , Oryza/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Salicylic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...