Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 181, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468197

ABSTRACT

BACKGROUND: The era of high throughput sequencing offers new paths to identifying species boundaries that are complementary to traditional morphology-based delimitations. De novo species delimitation using traditional or DNA super-barcodes serve as efficient approaches to recognizing putative species (molecular operational taxonomic units, MOTUs). Tea plants (Camellia sect. Thea) form a group of morphologically similar species with significant economic value, providing the raw material for tea, which is the most popular nonalcoholic caffeine-containing beverage in the world. Taxonomic challenges have arisen from vague species boundaries in this group. RESULTS: Based on the most comprehensive sampling of C. sect. Thea by far (165 individuals of 39 morphospecies), we applied three de novo species delimitation methods (ASAP, PTP, and mPTP) using plastome data to provide an independent evaluation of morphology-based species boundaries in tea plants. Comparing MOTU partitions with morphospecies, we particularly tested the congruence of MOTUs resulting from different methods. We recognized 28 consensus MOTUs within C. sect. Thea, while tentatively suggesting that 11 morphospecies be discarded. Ten of the 28 consensus MOTUs were uncovered as morphospecies complexes in need of further study integrating other evidence. Our results also showed a strong imbalance among the analyzed MOTUs in terms of the number of molecular diagnostic characters. CONCLUSION: This study serves as a solid step forward for recognizing the underlying species boundaries of tea plants, providing a needed evidence-based framework for the utilization and conservation of this economically important plant group.


Subject(s)
Camellia sinensis , Camellia , Humans , DNA Barcoding, Taxonomic/methods , Camellia sinensis/genetics , Tea/genetics , DNA , Phylogeny
2.
Plant Commun ; 4(5): 100564, 2023 09 11.
Article in English | MEDLINE | ID: mdl-36809882

ABSTRACT

Epiphytes with crassulacean acid metabolism (CAM) photosynthesis are widespread among vascular plants, and repeated evolution of CAM photosynthesis is a key innovation for micro-ecosystem adaptation. However, we lack a complete understanding of the molecular regulation of CAM photosynthesis in epiphytes. Here, we report a high-quality chromosome-level genome assembly of a CAM epiphyte, Cymbidium mannii (Orchidaceae). The 2.88-Gb orchid genome with a contig N50 of 22.7 Mb and 27 192 annotated genes was organized into 20 pseudochromosomes, 82.8% of which consisted of repetitive elements. Recent expansions of long terminal repeat retrotransposon families have made a major contribution to the evolution of genome size in Cymbidium orchids. We reveal a holistic scenario of molecular regulation of metabolic physiology using high-resolution transcriptomics, proteomics, and metabolomics data collected across a CAM diel cycle. Patterns of rhythmically oscillating metabolites, especially CAM-related products, reveal circadian rhythmicity in metabolite accumulation in epiphytes. Genome-wide analysis of transcript and protein level regulation revealed phase shifts during the multifaceted regulation of circadian metabolism. Notably, we observed diurnal expression of several core CAM genes (especially ßCA and PPC) that may be involved in temporal fixation of carbon sources. Our study provides a valuable resource for investigating post-transcription and translation scenarios in C. mannii, an Orchidaceae model for understanding the evolution of innovative traits in epiphytes.


Subject(s)
Crassulacean Acid Metabolism , Orchidaceae , Phylogeny , Ecosystem , Photosynthesis/genetics , Orchidaceae/genetics , Orchidaceae/metabolism
3.
Int J Mol Sci ; 22(18)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34576004

ABSTRACT

Posttranscriptional modifications, including intron splicing and RNA editing, are common processes during regulation of gene expression in plant organelle genomes. However, the intermediate products of intron-splicing, and the interplay between intron-splicing and RNA-editing were not well studied. Most organelle transcriptome analyses were based on the Illumina short reads which were unable to capture the full spectrum of transcript intermediates within an organelle. To fully investigate the intermediates during intron splicing and the underlying relationships with RNA editing, we used PacBio DNA-seq and Iso-seq, together with Illumina short reads genome and transcriptome sequencing data to assemble the chloroplast and mitochondrial genomes of Nymphaea 'Joey Tomocik' and analyze their posttranscriptional features. With the direct evidence from Iso-seq, multiple intermediates partially or fully intron-spliced were observed, and we also found that both cis- and trans-splicing introns were spliced randomly. Moreover, by using rRNA-depleted and non-Oligo(dT)-enrichment strand-specific RNA-seq data and combining direct SNP-calling and transcript-mapping methods, we identified 98 and 865 RNA-editing sites in the plastome and mitogenome of N. 'Joey Tomocik', respectively. The target codon preference, the tendency of increasing protein hydrophobicity, and the bias distribution of editing sites are similar in both organelles, suggesting their common evolutionary origin and shared editing machinery. The distribution of RNA editing sites also implies that the RNA editing sites in the intron and exon regions may splice synchronously, except those exonic sites adjacent to intron which could only be edited after being intron-spliced. Our study provides solid evidence for the multiple intermediates co-existing during intron-splicing and their interplay with RNA editing in organelle genomes of a basal angiosperm.


Subject(s)
Gene Expression Profiling , Genome, Mitochondrial , Genome, Plant , Introns , Mitochondria , Nymphaea , Trans-Splicing , Exons , Mitochondria/genetics , Mitochondria/metabolism , Nymphaea/genetics , Nymphaea/metabolism
4.
BMC Plant Biol ; 19(1): 293, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31272375

ABSTRACT

BACKGROUND: Robust phylogenies for species with giant genomes and closely related taxa can build evolutionary frameworks for investigating the origin and evolution of these genomic gigantisms. Paris japonica (Melanthiaceae) has the largest genome that has been confirmed in eukaryotes to date; however, its phylogenetic position remains unresolved. As a result, the evolutionary history of the genomic gigantisms in P. japonica remains poorly understood. RESULTS: We used next-generation sequencing to generate complete plastomes of P. japonica, P. verticillata, Trillium govanianum, Ypsilandra thibetica and Y. yunnanensis. Together with published plastomes, the infra-familial relationships in Melanthiaceae and infra-generic phylogeny in Paris were investigated, and their divergence times were calculated. The results indicated that the expansion of the ancestral genome of extant Paris and Trillium occurred approximately from 59.16 Mya to 38.21 Mya. The sister relationship between P. japonica and the section Euthyra was recovered, and they diverged around the transition of the Oligocene/Miocene (20 Mya), when the Japan Islands were separated from the continent of Asia. CONCLUSIONS: The genome size expansion in the most recent common ancestor for Paris and Trillium was most possibly a gradual process that lasted for approximately 20 million years. The divergence of P. japonica (section Kinugasa) and other taxa with thick rhizome may have been triggered by the isolation of the Japan Islands from the continent of Asia. This long-term separation, since the Oligocene/Miocene boundary, would have played an important role in the formation and evolution of the genomic gigantism in P. japonica. Moreover, our results support the taxonomic treatment of Paris as a genus rather than dividing it into three genera, but do not support the recognition of T. govanianum as the separate genus Trillidium.


Subject(s)
Genome Size , Genome, Chloroplast , Genome, Plant , Melanthiaceae/genetics , Chloroplasts , Evolution, Molecular , Phylogeny
5.
Mol Ecol Resour ; 19(5): 1333-1345, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31237984

ABSTRACT

Complete plastid genome (plastome) sequences and nuclear ribosomal DNA (nrDNA) regions have been proposed as candidates for the next generation of DNA barcodes for plant species discrimination. However, the efficacy of this approach still lacks comprehensive evaluation. We carried out a case study in the economically important but phylogenetically and taxonomically difficult genus Panax (Araliaceae). We generated a large data set of plastomes and nrDNA sequences from multiple accessions per species. Our data improved the phylogenetic resolution and levels of species discrimination in Panax, compared to any previous studies using standard DNA barcodes. This provides new insights into the speciation, lineage diversification and biogeography of the genus. However, both plastome and nrDNA failed to completely resolve the phylogenetic relationships in the Panax bipinnatifidus species complex, and only half of the species within it were recovered as monophyletic units. The results suggest that complete plastome and ribosomal DNA sequences can substantially increase species discriminatory power in plants, but they are not powerful enough to fully resolve phylogenetic relationships and discriminate all species, particularly in evolutionarily young and complex plant groups. To gain further resolving power for closely related species, the addition of substantial numbers of nuclear markers is likely to be required.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Plant/genetics , DNA, Ribosomal/genetics , Panax/classification , Panax/genetics , Plastids/genetics , Sequence Analysis, DNA/methods
6.
Plant Methods ; 14: 43, 2018.
Article in English | MEDLINE | ID: mdl-29928291

ABSTRACT

BACKGROUND: The world's herbaria contain millions of specimens, collected and named by thousands of researchers, over hundreds of years. However, this treasure has remained largely inaccessible to genetic studies, because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. RESULTS: As a practical test of routine recovery of rDNA and plastid genome sequences from herbarium specimens, we sequenced 25 herbarium specimens up to 80 years old from 16 different Angiosperm families. Paired-end reads were generated, yielding successful plastid genome assemblies for 23 species and nuclear rDNAs for 24 species, respectively. These data showed that genome skimming can be used to generate genomic information from herbarium specimens as old as 80 years and using as little as 500 pg of degraded starting DNA. CONCLUSIONS: The routine plastome sequencing from herbarium specimens is feasible and cost-effective (compare with Sanger sequencing or plastome-enrichment approaches), and can be performed with limited sample destruction.

SELECTION OF CITATIONS
SEARCH DETAIL
...