Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709307

ABSTRACT

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Subject(s)
Epithelial-Mesenchymal Transition , Lactic Acid , Lipopolysaccharides , Monocarboxylic Acid Transporters , Pulmonary Fibrosis , Symporters , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/antagonists & inhibitors , Animals , Epithelial-Mesenchymal Transition/drug effects , Lipopolysaccharides/pharmacology , Symporters/metabolism , Symporters/genetics , Symporters/antagonists & inhibitors , Mice , Lactic Acid/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Mice, Inbred C57BL , Cell Line , Male , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/drug effects , Up-Regulation/drug effects
2.
Int Immunopharmacol ; 131: 111855, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38493697

ABSTRACT

Mechanical ventilation (MV) is an essential therapy for acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. However, it can also induce mechanical ventilation-induced pulmonary fibrosis (MVPF) and the underlying mechanism remains unknown. Based on a mouse model of MVPF, the present study aimed to explore the role of the angiotensin-converting enzyme/angiotensin II/angiotensin type 1 receptor (ACE/Ang-2/AT1R) axis in the process of MVPF. In addition, recombinant angiotensin-converting enzyme 2(rACE2), AT1R inhibitor valsartan, AGTR1-directed shRNA and ACE inhibitor perindopril were applied to verify the effect of inhibiting ACE/Ang-2/AT1R axis in the treatment of MVPF. Our study found MV induced an inflammatory reaction and collagen deposition in mouse lung tissue accompanied by the activation of ACE in lung tissue, increased concentration of Ang-2 in bronchoalveolar lavage fluid (BALF), and upregulation of AT1R in alveolar epithelial cells. The process of pulmonary fibrosis could be alleviated by the application of the ACE inhibitor perindopril, ATIR inhibitor valsartan and AGTR1-directed shRNA. Meanwhile, rACE2 could also alleviate MVPF through the degradation of Ang-2. Our finding indicated the ACE/Ang-2/AT1R axis played an essential role in the pathogenesis of MVPF. Pharmacological inhibition of the ACE/Ang-2/AT1R axis might be a promising strategy for the treatment of MVPF.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Receptor, Angiotensin, Type 1/metabolism , Peptidyl-Dipeptidase A/metabolism , Perindopril/pharmacology , Perindopril/therapeutic use , Respiration, Artificial , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Valsartan/therapeutic use , RNA, Small Interfering/genetics , Angiotensin II/metabolism
3.
Clin Cancer Res ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512114

ABSTRACT

PURPOSE: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. EXPERIMENTAL DESIGN: A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for metastatic patients. RESULTS: In the localized setting, we found that a cell cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS: 17.3 vs. 9.6 months, P=0.016) and OS (median OS: not reached vs. 25.7 months, P=0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. CONCLUSIONS: ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.

4.
Heliyon ; 10(2): e24357, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38293443

ABSTRACT

Background: Fibrosis is a heavy burden on the global healthcare system. Recently, an increasing number of studies have demonstrated that Extracellular vesicles play an important role in intercellular communication under both physiological and pathological conditions. This study aimed to explore the role of extracellular vesicles' in fibrosis using bibliometric methods. Methods: Original articles and reviews related to extracellular vesicles and fibrosis were obtained from the Web of Science Core Collection database on November 9, 2022. VOSviewer was used to obtain general information, including co-institution, co-authorship, and co-occurrence visualization maps. The CiteSpace software was used to analyze citation bursts of keywords and references, a timeline view of the top clusters of keywords and cited articles, and the dual map. R package "bibliometrix" was used to analyze annual production, citation per year, collaboration network between countries/regions, thematic evolution map, and historiography network. Results: In total, 3376 articles related to extracellular vesicles and fibrosis published from 2013 to 2022 were included in this study, with China and the United States being the top contributors. Shanghai Jiao Tong University has the highest number of publications. The main collaborators were Giovanni Camussi, Stefania Bruno, Marta Tepparo, and Cristina Grange. Journals related to molecular, biology, genetics, health, immunology, and medicine tended to publish literature on extracellular vesicles and fibrosis. "Recovery," "heterogeneity," "degradation," "inflammation," and "mesenchymal stem cells" are the keywords in this research field. Literature on extracellular vesicles and fibrosis associated with several diseases, including "kidney disease," "rheumatoid arthritis," and "skin regeneration" may be the latest hot research field. Conclusions: This study provides a comprehensive perspective on extracellular vesicles and fibrosis through a bibliometric analysis of articles published between 2013 and 2022. We identified the most influential countries, institutions, authors, and journals. We provide information on recent research frontiers and trends for scholars interested in the field of extracellular vesicles and fibrosis. Their role in biological processes has great potential to initiate a new upsurge in future research.

5.
Shock ; 61(2): 283-293, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38010091

ABSTRACT

ABSTRACT: Recent research has revealed that aerobic glycolysis has a strong correlation with sepsis-associated pulmonary fibrosis (PF). However, at present, the mechanism and pathogenesis remain unclear. We aimed to test the hypothesis that the adenosine monophosphate-activated protein kinase (AMPK) activation and suppression of hypoxia-inducible factor 1α (HIF-1α)-induced aerobic glycolysis play a central role in septic pulmonary fibrogenesis. Cellular experiments demonstrated that lipopolysaccharide increased fibroblast activation through AMPK inactivation, HIF-1α induction, alongside an augmentation of aerobic glycolysis. By contrast, the effects were reversed by AMPK activation or HIF-1α inhibition. In addition, pretreatment with metformin, which is an AMPK activator, suppresses HIF-1α expression and alleviates PF associated with sepsis, which is caused by aerobic glycolysis, in mice. Hypoxia-inducible factor 1α knockdown demonstrated similar protective effects in vivo . Our research implies that targeting AMPK activation and HIF-1α-induced aerobic glycolysis with metformin might be a practical and useful therapeutic alternative for sepsis-associated PF.


Subject(s)
Metformin , Pulmonary Fibrosis , Sepsis , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , AMP-Activated Protein Kinases/metabolism , Hypoxia , Sepsis/complications , Sepsis/drug therapy , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
6.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(11): 1171-1176, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-37987127

ABSTRACT

OBJECTIVE: To demonstrate the mechanism of mechanical ventilation (MV) induced endoplasmic reticulum stress (ERS) promoting mechanical ventilation-induced pulmonary fibrosis (MVPF), and to clarify the role of angiotensin receptor 1 (AT1R) during the process. METHODS: The C57BL/6 mice were randomly divided into four groups: Sham group, MV group, AT1R-shRNA group and MV+AT1R-shRNA group, with 6 mice in each group. The MV group and MV+AT1R-shRNA group mechanically ventilated for 2 hours after endotracheal intubation to establish MVPF animal model (parameter settings: respiratory rate 70 times/minutes, tidal volume 20 mL/kg, inhated oxygen concentration 0.21). The Sham group and AT1R-shRNA group only underwent intubation after anesthesia and maintained spontaneous breathing. AT1R-shRNA group and MV+AT1R-shRNA group were airway injected with the adeno-associated virus one month before modeling to inhibit AT1R gene expression in lung tissue. The expressions of AT1R, ERS signature proteins [immunoglobulin heavy chain-binding protein (BIP), protein disulfide isomerase (PDI)], fibrosis signature proteins [collagen I (COL1A1), α-smooth muscle actin (α-SMA)] in lung tissues were detected by immunofluorescence and Western blotting. Hematoxylin-eosin (HE) staining was used to evaluate lung injury and Masson staining was used to evaluate pulmonary fibrosis. RESULTS: Compared with the Sham group, the degree of pulmonary fibrosis and lung injury were more significant in the MV group. In the MV group, the protein expressions of AT1R, BIP, PDI, COL1A1 and α-SMA were increased (AT1R/ß-actin: 1.40±0.02 vs. 1, BIP/ß-actin: 2.79±0.07 vs. 1, PDI/ß-actin: 2.07±0.02 vs. 1, COL1A1/α-Tubulin: 2.60±0.15 vs. 1, α-SMA/α-Tubulin: 2.80±0.25 vs. 1, all P < 0.01). The number of E-cad+/AT1R+ and E-cad+/BIP+ cells in lung tissue increased, and the fluorescence intensity of COL1A1 and α-SMA increased. Compared with the MV group, the degree of pulmonary fibrosis and lung injury were significantly relieved in the MV+AT1R-shRNA group. In the MV+AT1R-shRNA group, the protein expressions of AT1R, BIP, PDI, COL1A1 and α-SMA were decreased (AT1R/ß-actin: 0.53±0.03 vs. 1.40±0.02, BIP/ß-actin: 1.73±0.15 vs. 2.79±0.07, PDI/ß-actin: 1.04±0.07 vs. 2.07±0.02, COL1A1/α-Tubulin: 1.29±0.11 vs. 2.60±0.15, α-SMA/α-Tubulin: 1.27±0.10 vs. 2.80±0.25, all P < 0.01). The number of E-cad+/AT1R+ and E-cad+/BIP+ cells in lung tissue decreased, and the fluorescence intensity of COL1A1 and α-SMA decreased. There was no statistically significant difference in the indicators between AT1R-shRNA group and Sham group. CONCLUSIONS: MV up-regulate the expression of AT1R in alveolar epithelial cells, activate the AT1R pathway, induce ERS and promote the progression of MVPF.


Subject(s)
Lung Injury , Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Respiration, Artificial/adverse effects , Actins/metabolism , Tubulin , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , RNA, Small Interfering
7.
Front Med (Lausanne) ; 10: 1221711, 2023.
Article in English | MEDLINE | ID: mdl-37564041

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) is an acute infectious pneumonia caused by a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection previously unknown to humans. However, predictive studies of acute respiratory distress syndrome (ARDS) in patients with COVID-19 are limited. In this study, we attempted to establish predictive models to predict ARDS caused by COVID-19 via a thorough analysis of patients' clinical data and CT images. Method: The data of included patients were retrospectively collected from the intensive care unit in our hospital from April 2022 to June 2022. The primary outcome was the development of ARDS after ICU admission. We first established two individual predictive models based on extreme gradient boosting (XGBoost) and convolutional neural network (CNN), respectively; then, an integrated model was developed by combining the two individual models. The performance of all the predictive models was evaluated using the area under receiver operating characteristic curve (AUC), confusion matrix, and calibration plot. Results: A total of 103 critically ill COVID-19 patients were included in this research, of which 23 patients (22.3%) developed ARDS after admission; five predictive variables were selected and further used to establish the machine learning models, and the XGBoost model yielded the most accurate predictions with the highest AUC (0.94, 95% CI: 0.91-0.96). The AUC of the CT-based convolutional neural network predictive model and the integrated model was 0.96 (95% CI: 0.93-0.98) and 0.97 (95% CI: 0.95-0.99), respectively. Conclusion: An integrated deep learning model could be used to predict COVID-19 ARDS in critically ill patients.

8.
BMJ Open Respir Res ; 10(1)2023 08.
Article in English | MEDLINE | ID: mdl-37620111

ABSTRACT

Recent research has revealed that mechanical ventilation (MV) could initiate ventilator-induced lung injury along with the initiation of the process of pulmonary fibrosis (PF), leading to MV-induced PF (MVPF). However, the underlying mechanism remains unclear. This study aimed to explore the role of MV-induced extracellular vesicles (MV-EVs) and the c-Jun N-terminal kinase (JNK) signalling pathway in the pathogenesis of MVPF in vivo and in vitro. The process of MV is accompanied by the secretion of MV-EVs, which could induce lung fibroblast activation. Furthermore, single-cell RNA-sequencing analysis revealed that the JNK pathway in lung fibroblasts was activated after MV initiation. Inhibiting the JNK pathway could both restrain MV-EV-induced lung fibroblast activation in vitro or reduce the severity of MVPF in vivo. In conclusion, this study demonstrated that MV-EVs contribute to MVPF progression by activating lung fibroblasts via the JNK signalling pathway and that inhibiting the secretion of EV and the activation of the JNK signalling pathway is a promising strategy for treating MVPF.


Subject(s)
Extracellular Vesicles , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/etiology , MAP Kinase Signaling System , Respiration, Artificial/adverse effects , Fibroblasts , Lung
9.
Front Immunol ; 14: 1141761, 2023.
Article in English | MEDLINE | ID: mdl-36993978

ABSTRACT

Objective: For respiratory failure patients, mechanical ventilation (MV) is a life-saving therapy to maintain respiratory function. However, MV could also cause damage to pulmonary structures, result in ventilator-induced lung injury (VILI) and eventually progress to mechanical ventilation-induced pulmonary fibrosis (MVPF). Mechanically ventilated patients with MVPF are closely related to increased mortality and poor quality of life in long-term survival. Thus, a thorough understanding of the involved mechanism is necessary. Methods: We used next-generation sequencing to identify differentially expressed non-coding RNAs (ncRNAs) in BALF EVs which were isolated from Sham and MV mice. Bioinformatics analysis was conducted to identify the engaged ncRNAs and related signaling pathways in the process of MVPF. Results: We found 1801 messenger RNAs (mRNA), 53 micro RNAs (miRNA), 273 circular RNAs (circRNA) and 552 long non-coding RNAs (lncRNA) in mice BALF EVs of two groups, which showed significant differential expression. TargetScan predicted that 53 differentially expressed miRNAs targeted 3105 mRNAs. MiRanda revealed that 273 differentially expressed circRNAs were associated with 241 mRNAs while 552 differentially expressed lncRNAs were predicated to target 20528 mRNAs. GO, KEGG pathway analysis and KOG classification showed that these differentially expressed ncRNA-targeted mRNAs were enriched in fibrosis related signaling pathways and biological processes. By taking the intersection of miRNAs target genes, circRNAs target genes and lncRNAs target genes, we found 24 common key genes and 6 downregulated genes were confirmed by qRT-PCR. Conclusions: Changes in BALF-EV ncRNAs may contribute to MVPF. Identification of key target genes involved in the pathogenesis of MVPF could lead to interventions that slow or reverse fibrosis progression.


Subject(s)
Extracellular Vesicles , MicroRNAs , Pulmonary Fibrosis , RNA, Long Noncoding , Mice , Animals , RNA, Circular/genetics , Respiration, Artificial/adverse effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Pulmonary Fibrosis/genetics , Bronchoalveolar Lavage Fluid , Quality of Life , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Fibrosis , Extracellular Vesicles/metabolism
10.
Lab Invest ; 103(1): 100021, 2023 01.
Article in English | MEDLINE | ID: mdl-36748196

ABSTRACT

Mechanical ventilation (MV) has become a clinical first-line treatment option for patients with respiratory failure. However, it was unclear whether MV further aggravates the process of sepsis-associated pulmonary fibrosis and eventually leads to sepsis and mechanical ventilation-associated pulmonary fibrosis (S-MVPF). This study aimed to explore the mechanism of S-MVPF concerning integrin ß3 activation in glycometabolic reprogramming of lung fibroblasts. We found that MV exacerbated sepsis-associated pulmonary fibrosis induced by lipopolysaccharide, which was accompanied by proliferation of lung fibroblasts, increased deposition of collagen in lung tissue, and increased procollagen type I carboxy-terminal propeptide in the bronchoalveolar lavage fluid. A large number of integrin ß3- and pyruvate kinase M2-positive fibroblasts were detected in lung tissue after stimulation with lipopolysaccharide and MV, with an increase in lactate dehydrogenase A expression and lactate levels. S-MVPF was primarily attenuated in integrin ß3-knockout mice, which also resulted in a decrease in the levels of pyruvate kinase M2, lactate dehydrogenase A, and lactate. In conclusion, MV aggravated sepsis-associated pulmonary fibrosis, with glycometabolic reprogramming mediated by integrin ß3 activation. Thus, integrin ß3-mediated glycometabolic reprogramming might be a potential therapeutic target for S-MVPF.


Subject(s)
Pulmonary Fibrosis , Sepsis , Mice , Animals , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Integrin beta3/metabolism , Respiration, Artificial , Lipopolysaccharides , Lactate Dehydrogenase 5 , Pyruvate Kinase , Sepsis/complications
11.
Shock ; 59(3): 352-359, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36625493

ABSTRACT

ABSTRACT: Background: Acute kidney injury (AKI) is a prevalent and serious complication among patients with sepsis-associated acute respiratory distress syndrome (ARDS). Prompt and accurate prediction of AKI has an important role in timely intervention, ultimately improving the patients' survival rate. This study aimed to establish machine learning models to predict AKI via thorough analysis of data derived from electronic medical records. Method: The data of eligible patients were retrospectively collected from the Medical Information Mart for Intensive Care III database from 2001 to 2012. The primary outcome was the development of AKI within 48 hours after intensive care unit admission. Four different machine learning models were established based on logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost). The performance of all predictive models was evaluated using the area under receiver operating characteristic curve, precision-recall curve, confusion matrix, and calibration plot. Moreover, the discrimination ability of the machine learning models was compared with that of the Sequential Organ Failure Assessment (SOFA) model. Results; Among 1,085 sepsis-associated ARDS patients included in this research, 375 patients (34.6%) developed AKI within 48 hours after intensive care unit admission. Twelve predictive variables were selected and further used to establish the machine learning models. The XGBoost model yielded the most accurate predictions with the highest area under receiver operating characteristic curve (0.86) and accuracy (0.81). In addition, a novel shiny application based on the XGBoost model was established to predict the probability of developing AKI among patients with sepsis-associated ARDS. Conclusions: Machine learning models could be used for predicting AKI in patients with sepsis-associated ARDS. Accordingly, a user-friendly shiny application based on the XGBoost model with reliable predictive performance was released online to predict the probability of developing AKI among patients with sepsis-associated ARDS.


Subject(s)
Acute Kidney Injury , Respiratory Distress Syndrome , Sepsis , Humans , Retrospective Studies , Machine Learning
12.
China Tropical Medicine ; (12): 234-2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-979622

ABSTRACT

@#Abstract: Objective To analyze the spatial-temporal characteristics of the active pulmonary tuberculosis (PTB) and the pathogenic positive PTB in Fuling District of Chongqing during the 13th Five-Year Plan period, so as to explore the clustering areas, and provide scientific basis for the precise prevention and control of tuberculosis in Fuling District. Methods The PTB registration data of 27 townships in Fuling District from 2016 to 2020 were collected. The descriptive analysis were used to describe the temporal and spatial distribution characteristics of patients, SaTScan9.0 and ArcGis10.6 was used for spatial-temporal scanning analysis and local auto-correlation analysis. The results were visualized by ArcGis10.6. Results A total of 4 038 case of active PTB patients were registered and a downward trend was observed in PTB during the 13th Five-Year Plan period in Fuling District. The average annual registration rate of PTB was 70.17/100 000, and the annual PTB registration rate declined by 8.21%. The peak of active PTB and etiological positive PTB were mainly concentrated in March and June respectively. The top five streets of cumulative active PTB patients registered were Lizhi street, Dunren street, Chongyi street, Ma 'an street and Jiangdong street, accounting for 60.18% of the total registered PTB patients during the 13th Five-Year Plan period. The top three average annual registration rates were Dunren street (101.35/100 000), Chongyi street (101.34/100 000) and Wulingshan Township (99.21/100 000). The registered PTB from 2016 to 2020 showed a global auto-correlation (Moran's I=0.64, P<0.0001). The "high-high" area of active PTB and the etiological positive PTB all covered Lizhi street, Jiangdong street and Longqiao street. By scanning analysis of spatial-temporal, the primary cluster of active PTB concentrated in the main urban area south of the Yangtze River in Fuling during January 2016 to December 2017, and the primary cluster of pathogenic positive PTB concentrated in the main urban area south of the Yangtze River in Fuling and Jiangdong street during January 2019 to December 2020. Conclusions During the 13th Five-Year Plan period, there was the spatial-temporal clustering of PTB in Fuling District, which mainly gathered in the main urban area south of the Yangtze River in Fuling district and surrounding streets centered on Lizhi street.

13.
Exp Mol Med ; 54(12): 2162-2174, 2022 12.
Article in English | MEDLINE | ID: mdl-36473935

ABSTRACT

Recent clinical research has revealed that mechanical ventilation (MV) can initiate pulmonary fibrosis and induce mechanical ventilation-induced pulmonary fibrosis (MVPF). However, the underlying mechanism remains largely uncharacterized. Based on a mouse model of MVPF and an alveolar epithelial cell cyclic strain model, the present study explores the possible mechanism of MVPF. Single-cell RNA-sequencing and EV RNA-sequencing analysis revealed that MV promoted apoptosis signal-regulating kinase 1 (ASK1)-mediated endoplasmic reticulum (ER) stress pathway activation and extracellular vesicle (EV) release from alveolar epithelial cells. Furthermore, the ASK1-ER stress pathway was shown to mediate mechanical stretch (MS)- or MV-induced EV release and lung fibroblast activation in vivo and in vitro. These processes were suppressed by ER stress inhibitors or by silencing ASK1 with ASK1- short hairpin RNA (shRNA). In addition, MVPF was suppressed by inhibiting ASK1 and ER stress in vivo. Therefore, the present study demonstrates that ASK1-ER stress pathway-mediated fibrotic-EV release from alveolar epithelial cells contributes to fibroblast activation and the initiation of pulmonary fibrosis during MV. The inhibited release of EVs targeting the ASK1-ER stress pathway might be a promising treatment strategy for MVPF.


Subject(s)
Alveolar Epithelial Cells , MAP Kinase Kinase Kinase 5 , Pulmonary Fibrosis , Animals , Mice , Apoptosis/physiology , Endoplasmic Reticulum Stress/physiology , Fibroblasts , Fibrosis , Lung/pathology , MAP Kinase Kinase Kinase 5/genetics , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , Respiration, Artificial , RNA
14.
Front Public Health ; 10: 967829, 2022.
Article in English | MEDLINE | ID: mdl-36203683

ABSTRACT

Background: The coronavirus disease 2019 (COVID-19) becomes a worldwide public health threat. Increasing evidence proves that COVID-19-induced acute injuries could be reversed by a couple of therapies. After that, post-COVID-19 fibrosis (PCF), a sequela of "Long COVID," earns rapidly emerging concerns. PCF is associated with deteriorative lung function and worse quality of life. But the process of PCF remains speculative. Therefore, we aim to conduct a bibliometric analysis to explore the overall structure, hotspots, and trend topics of PCF. Materials and methods: A comprehensive search was performed in the Web of Science core database to collect literature on PCF. Search syntax included COVID-19 relevant terms: "COVID 19," "COVID-19 Virus Disease," "COVID-19 Virus Infection," "Coronavirus Disease-19," "2019 Novel Coronavirus Disease," "2019 Novel Coronavirus Infection," "SARS Coronavirus 2 Infection," "COVID-19 Pandemic," "Coronavirus," "2019-nCoV," and "SARS-CoV-2"; and fibrosis relevant terms: "Fibrosis," "Fibroses," and "Cirrhosis." Articles in English were included. Totally 1,088 publications were enrolled. Searching results were subsequentially exported and collected for the bibliometric analysis. National, organizational, and individual level data were analyzed and visualized through biblioshiny package in the R, VOSviewer software, the CiteSpace software, and the Graphical Clustering Toolkit (gCLUTO) software, respectively. Results: The intrinsic structure and development in the field of PCF were investigated in the present bibliometric analysis. The topmost keywords were "COVID-19" (occurrences, 636) surrounded by "SARS-CoV-2" (occurrences, 242), "coronavirus" (occurrences, 123), "fibrosis" (occurrences, 120), and "pneumonia" (occurrences, 94). The epidemiology, physiopathology, diagnosis, and therapy of PCF were extensively studied. After this, based on dynamic analysis of keywords, hot topics sharply changed from "Wuhan," "inflammation," and "cytokine storm" to "quality of life" and "infection" through burst detection; from "acute respiratory syndrome," "cystic-fibrosis" and "fibrosis" to "infection," "COVID-19," "quality-of-life" through thematic evolution; from "enzyme" to "post COVID." Similarly, co-cited references analysis showed that topics of references with most citations shift from "pulmonary pathology" (cluster 0) to "COVID-19 vaccination" (cluster 6). Additionally, the overview of contributors, impact, and collaboration was revealed. Summarily, the USA stood out as the most prolific, influential, and collaborative country. The Udice French Research University, Imperial College London, Harvard University, and the University of Washington represented the largest volume of publications, citations, H-index, and co-authorships, respectively. Dana Albon was the most productive and cited author with the strongest co-authorship link strength. Journal of Cystic Fibrosis topped the list of prolific and influential journals. Conclusion: Outcomes gained from this study assisted professionals in better realizing PCF and would guide future practices. Epidemiology, pathogenesis, and therapeutics were study hotspots in the early phase of PCF research. As the spread of the COVID-19 pandemic and progress in this field, recent attention shifted to the quality of life of patients and post-COVID comorbidities. Nevertheless, COVID-19 relevant infection and vaccination were speculated to be research trends with current and future interest. International cooperation as well as in-depth laboratory experiments were encouraged to promote further explorations in the field of PCF.


Subject(s)
COVID-19 , Bibliometrics , COVID-19/complications , COVID-19/epidemiology , Cicatrix , Cytokines , Humans , Pandemics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
15.
Theranostics ; 12(14): 6057-6068, 2022.
Article in English | MEDLINE | ID: mdl-36168620

ABSTRACT

Background: Mechanical ventilation (MV) can induce pulmonary fibrosis. This study aims to investigate whether MV-induced pulmonary fibrosis is associated with aerobic glycolysis and seeks to uncover the underlying mechanisms mediated by integrin ß3-pyruvate kinase M2 (PKM2) pathway. Methods: PKM2 knockdown or inhibition, integrin ß3 knockout or inhibition and wild-type mice were exposed to MV (20 mL/kg) for 2 h. Results: Mice exposed to MV exhibited increased expression of collagen deposition, and upregulation of α-smooth muscle actin and collagen I in lung tissues. Single cells analysis showed that MV-induced pulmonary fibrosis was associated with increased gene expression of integrin and glycolysis in pulmonary fibroblasts, as well as upregulation of glycolytic products tested by metabolomics. Meanwhile, increased protein level of integrin ß3 and PKM2 was confirmed by western blot and immunohistochemistry. Double immunofluorescence staining and flow cytometric analysis showed increased number of fibronectin+/integrin ß3+ and fibronectin+/PKM2+ fibroblasts in lung tissues. Furthermore, MV-induced aerobic glycolysis and pulmonary fibrosis were ameliorated after treatment with PKM2 knockdown-AAV and inhibition, or in integrin ß3 knockout and inhibition mice. Conclusions: Integrin ß3-PKM2 pathway-mediated aerobic glycolysis contributes to MV-induced pulmonary fibrosis. The inhibition of aerobic glycolysis targeting integrin ß3-PKM2 pathway may be a promising treatment for MV-induced pulmonary fibrosis.


Subject(s)
Pulmonary Fibrosis , Pyruvate Kinase , Actins/metabolism , Animals , Fibronectins/metabolism , Glycolysis , Integrin beta3/metabolism , Mice , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Respiration, Artificial
16.
Front Med (Lausanne) ; 9: 906903, 2022.
Article in English | MEDLINE | ID: mdl-35966840

ABSTRACT

Background: Recent studies have mainly focused on the association between baseline intensity of mechanical ventilation (driving pressure or mechanical power) and mortality in acute respiratory distress syndrome (ARDS). It is unclear whether the association between the time-varying intensity of mechanical ventilation and mortality is significant and varies according to the fluid balance trajectories. Methods: We conducted a secondary analysis based on the NHLBI ARDS Network's Fluid and Catheter Treatment Trial (FACTT). The primary outcome was 28-day mortality. The group-based trajectory modeling (GBTM) was employed to identify phenotypes based on fluid balance trajectories. Bayesian joint models were used to account for informative censoring due to death during follow-up. Results: A total of 1,000 patients with ARDS were included in the analysis. Our study identified two phenotypes of ARDS, and compared patients with Early Negative Fluid Balance (Early NFB) and patients with Persistent-Positive Fluid Balance (Persistent-PFB) accompanied by higher tidal volume, higher static driving pressure, higher mechanical power, and lower PaO2/FiO2, over time during mechanical ventilation. The 28-day mortality was 14.8% in Early NFB and 49.6% in Persistent-PFB (p < 0.001). In the Bayesian joint models, the hazard ratio (HR) of 28-day death for time-varying static driving pressure [HR 1.03 (95% CI 1.01-1.05; p < 0.001)] and mechanical power [HR 1.01 (95% CI 1.002-1.02; p = 0.01)] was significant in patients with Early NFB, but not in patients with Persistent-PFB. Conclusion: Time-varying intensity of mechanical ventilation was associated with a 28-day mortality of ARDS in a patient with Early NFB but not in patients with Persistent-PFB.

17.
Lab Invest ; 102(4): 432-439, 2022 04.
Article in English | MEDLINE | ID: mdl-34775492

ABSTRACT

Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung fibroblasts is closely associated with the pathogenesis of septic pulmonary fibrosis. Nevertheless, the underlying mechanism remains poorly defined. In this study, we demonstrate that LPS promotes c-Jun N-terminal kinase (JNK) signaling pathway activation and endogenous tumor necrosis factor-α (TNF-α) secretion in pulmonary macrophages. This, in turn, could significantly promote aerobic glycolysis and increase lactate production in lung fibroblasts through 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) activation. Culturing human lung fibroblast MRC-5 cell line with TNF-α or endogenous TNF-α (cell supernatants of macrophages after LPS stimulation) both enhanced the aerobic glycolysis and increased lactate production. These effects could be prevented by treating macrophages with JNK pathway inhibitor, by administering TNF-α receptor 1 (TNFR1) siRNA, PFKFB3 inhibitor, or by silencing PFKFB3 with fibroblasts-specific shRNA. In addition, the inhibition of TNF-α secretion and PFKFB3 expression prevented LPS-induced pulmonary fibrosis in vivo. In conclusion, this study revealed that LPS-induced macrophage secretion of TNF-α could initiate fibroblast aerobic glycolysis and lactate production, implying that inflammation-metabolism interactions between lung macrophages and fibroblasts might play an essential role in LPS-induced pulmonary fibrosis.


Subject(s)
Lipopolysaccharides , Pulmonary Fibrosis , Acceleration , Fibroblasts/metabolism , Glycolysis , Humans , Lactic Acid/metabolism , Lipopolysaccharides/toxicity , Lung/metabolism , Macrophages/metabolism , Pulmonary Fibrosis/metabolism , Tumor Necrosis Factor-alpha/metabolism
18.
Int J Clin Pract ; 75(9): e14438, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34096147

ABSTRACT

BACKGROUND: This meta-analysis was performed to compare the effect of adrenal venous sampling with adrenocorticotropic hormone with that without adrenocorticotropic hormone in subjects with primary aldosteronism. METHODS: A systematic literature search up to May 2020 was performed and 17 studies were detected with 1878 subjects who had adrenal venous sampling operations. They reported relationships between with and without adrenocorticotropic hormone stimulation during adrenal venous sampling in subjects with primary aldosteronism. We calculated the odds ratio (OR) with 95% confidence intervals (CIs), using the dichotomous method with a random- or fixed-effect model. RESULTS: Adrenal venous sampling operations with adrenocorticotropic hormone stimulation had statistically significant lower incorrect lateralisation (OR, 0.57; 95% CI, 0.43-0.75, P < .001); lower unsuccessful cannulations in both adrenal veins (OR, 0.35; 95% CI, 0.21-0.58, P < .001); lower unsuccessful cannulations of left adrenal vein (OR, 0.10; 95% CI, 0.06-0.17, P < .001) and lower unsuccessful cannulations of right adrenal vein (OR, 0.25; 95% CI, 0.11-0.54, P < .001) compared with without adrenocorticotropic hormone stimulation in subjects with primary aldosteronism. CONCLUSIONS: Adrenal venous sampling operations with adrenocorticotropic hormone stimulation had significantly lower incorrect lateralisation, unsuccessful cannulations in both adrenal veins, unsuccessful cannulations of the left adrenal vein and unsuccessful cannulations of the right adrenal vein compared with adrenal venous sampling operations without adrenocorticotropic hormone stimulation in subjects with primary aldosteronism. Larger prospective studies are recommended to confirm these findings.


Subject(s)
Adrenocorticotropic Hormone , Hyperaldosteronism , Adrenal Glands , Aldosterone , Humans , Hyperaldosteronism/diagnosis , Prospective Studies , Retrospective Studies
19.
Mol Cell Biochem ; 476(1): 93-107, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32845436

ABSTRACT

Mesenchymal stem cells (MSCs) can alleviate acute respiratory distress syndrome (ARDS), but the mechanisms involved are unclear, especially about their specific effects on cellular mitochondrial respiratory function. Thirty mice were allocated into the Control, LPS, and LPS + Bone marrow mesenchymal stem cell (BMSC) group (n = 10/group). Mouse alveolar epithelial cells (MLE-12) and macrophage cells (RAW264.7) were divided into the same groups. Pathological variation, inflammation-related factors, reactive oxygen species (ROS), ATP levels, and oxygen consumption rate (OCR) were analyzed. Pathologic features of ARDS were observed in the LPS group and were significantly alleviated by BMSCs. The trend in inflammation-related factors among the three groups was the LPS group > LPS + BMSC group > Control group. In the MLE-12 co-culture system, IL-6 was increased in the LPS group but not significantly reduced in the LPS + BMSC group. In the RAW264.7 co-culture system, IL-1ß, TNF-α, and IL-10 levels were all increased in the LPS group, IL-1ß and TNF-α levels were reduced by BMSCs, while IL-10 level kept increasing. ROS and ATP levels were increased and decreased respectively in both MLE-12 and RAW264.7 cells in the LPS groups but reversed by BMSCs. Basal OCR, ATP-linked OCR, and maximal OCR were lower in the LPS groups. Impaired basal OCR and ATP-linked OCR in MLE-12 cells were partially restored by BMSCs, while impaired basal OCR and maximal OCR in RAW264.7 cells were restored by BMSCs. BMSCs improved the mitochondrial respiration dysfunction of macrophages and alveolar epithelial cells induced by LPS, alleviated lung tissue injury, and inflammatory response in a mouse model of ARDS.


Subject(s)
Epithelium/metabolism , Mesenchymal Stem Cells/cytology , Mitochondria/metabolism , Pulmonary Alveoli/metabolism , Respiratory Distress Syndrome/metabolism , Adenosine Triphosphate/metabolism , Animals , Bone Marrow Cells/cytology , Coculture Techniques , Inflammation , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/metabolism , Lung Injury/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Oxygen Consumption , RAW 264.7 Cells
20.
Dis Markers ; 2020: 8854700, 2020.
Article in English | MEDLINE | ID: mdl-33062073

ABSTRACT

During cardiopulmonary bypass (CPB), pulmonary ischemia/reperfusion (I/R) injury can cause acute lung injury (ALI). Our previous research confirmed that abnormal high-mobility group box 1 (HMGB1) release after CPB was closely related to ALI. However, the mechanism underlying the HMGB1-mediated induction of ALI after CPB is unclear. Our previous study found that HMGB1 binds Toll-like receptor 4 (TLR4), leading to lung injury, but direct evidence of a role for these proteins in the mechanism of CPB-induced lung injury has not been shown. We examined the effects of inhibiting HMGB1 or reducing TLR4 expression on CPB-induced lung injury in rats administered anti-HMBG1 antibody or TLR4 short-hairpin RNA (shTLR4), respectively. In these rat lungs, we studied the histologic changes and levels of interleukin- (IL-) 1ß, tumour necrosis factor- (TNF-) α, HMGB1, and TLR4 after CPB. After CPB, the lung tissues from untreated rats showed histologic features of injury and significantly elevated levels of IL-1ß, TNF-α, HMGB1, and TLR4. Treatment with anti-HMGB1 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1ß, TNF-α, HMGB1, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB. Treatment with shTLR4 attenuated the CPB-induced morphological inflammatory response and protein levels of IL-1ß, TNF-α, and TLR4 in the lung tissues and eventually alleviated the ALI after CPB, but could not alleviate the HMGB1 protein levels induced by CPB. In summary, the present study demonstrated that the HMGB1/TLR4 pathway mediated the development of ALI induced by CPB.


Subject(s)
Acute Lung Injury/pathology , Cardiopulmonary Bypass/adverse effects , Gene Expression Regulation , HMGB1 Protein/metabolism , Toll-Like Receptor 4/metabolism , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Animals , HMGB1 Protein/genetics , Male , Rats , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...