Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
World J Gastroenterol ; 30(24): 3120-3122, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38983961

ABSTRACT

Immune checkpoint inhibitors (ICIs) are widely used due to their effectiveness in treating various tumors. Immune-related adverse events (irAEs) are defined as adverse effects resulting from ICI treatment. Gastrointestinal irAEs are a common type of irAEs characterized by intestinal side effects, such as diarrhea and colitis, which may lead to the discontinuation of ICIs.


Subject(s)
Gastritis , Immune Checkpoint Inhibitors , Humans , Immune Checkpoint Inhibitors/adverse effects , Gastritis/chemically induced , Gastritis/immunology , Gastritis/diagnosis , Gastritis/drug therapy , Neoplasms/drug therapy , Neoplasms/immunology
2.
Int J Biol Macromol ; 267(Pt 2): 131597, 2024 May.
Article in English | MEDLINE | ID: mdl-38621567

ABSTRACT

The objective of this study was to compare the structural and functional attributes of Chinese yam starches obtained via different domestic cooking methods. Cooking changed the crystalline type from the C type to the CB type, and disrupted the short- and long-range molecular order of Chinese yam starch. The average chain length of amylopectin in BOS (boiling starch) was the smallest at 22.78, while RWS had the longest average chain length, reaching 24.24. These alterations in molecular structure resulted in variations in functional properties such as solubility, swelling power (SP), pasting characteristics, and rheological properties. Among these alterations, boiling was the most effective method for increasing the water-binding capacity and SP of starch. Specifically, its water holding capacity was 2.12 times that of RWS. In vitro digestion experiments indicated that BOS has a higher digestion rate (k = 0.0272 min-1) and lower RDS (rapidly digestible starch), which may be related to its amylopectin chain length distribution. This study can guide us to utilize yam starch through suitable cooking methods, which is relevant for the processing and application of Chinese yam starch.


Subject(s)
Cooking , Dioscorea , Starch , Cooking/methods , Starch/chemistry , Dioscorea/chemistry , Digestion , Solubility , Amylopectin/chemistry , Rheology , Water/chemistry
3.
Natl Sci Rev ; 11(4): nwae061, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38516036

ABSTRACT

A real spatial continuous modeling of climate and carbon cycle is developed, and tested for early Cenozoic from 60 Ma to 40 Ma.

4.
Food Chem ; 443: 138547, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38271897

ABSTRACT

In the present study, we hypothesised that Trichosanthes kirilowii seed protein isolate (TPI) obtained by different extraction methods have distinct structure, functional attributes and volatile profiles. Alkaline-extracted isolate (AE-TPI) exhibited lower protein content and a darker colour than the other two isolates because more polyphenols and pigments were coextracted. Salt-extracted isolate (SE-TPI) and AE-TPI had higher in vitro protein digestibility than reverse micelle-extracted isolate (RME-TPI) due to higher degrees of denaturation, which enabled them to be more susceptible to proteolysis. The SE-TPI gel resulted in a stronger gel network and greater hardness than the other two isolate gels. In the volatile profile, SE-TPI (22) yielded the largest number of volatile compounds, followed by AE-TPI (20) and RME-TPI (15). The current results indicated that the structure, functional properties and volatile profiles of TPI are largely influenced by the extraction technique.


Subject(s)
Trichosanthes , Trichosanthes/chemistry , Seeds/chemistry
5.
Cancers (Basel) ; 15(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37627085

ABSTRACT

CircRNAs are crucial in tumorigenesis and metastasis, and are comprehensively downregulated in hepatocellular carcinoma (HCC). Previous studies demonstrated that the back-splicing of circRNAs was closely related to 3'-end splicing. As a core executor of 3'-end cleavage, we hypothesized that CPSF3 modulated circRNA circularization. Clinical data were analyzed to establish the prognostic correlations. Cytological experiments were performed to determine the role of CPSF3 in HCC. A fluorescent reporter was employed to explore the back-splicing mechanism. The circRNAs regulated by CPSF3 were screened by RNA-seq and validated by PCR, and changes in downstream pathways were explored by molecular experiments. Finally, the safety and efficacy of the CPSF3 inhibitor JTE-607 were verified both in vitro and in vivo. The results showed that CPSF3 was highly expressed in HCC cells, promoting their proliferation and migration, and that a high CPSF3 level was predictive of a poor prognosis. A mechanistic study revealed that CPSF3 enhanced RNA cleavage, thereby reducing circRNAs, and increasing linear mRNAs. Furthermore, inhibition of CPSF3 by JET-607 suppressed the proliferation of HCC cells. Our findings indicate that the increase of CPSF3 in HCC promotes the shift of pre-mRNA from circRNA to linear mRNA, leading to uncontrolled cell proliferation. JTE-607 exerted a therapeutic effect on HCC by blocking CPSF3.

6.
Biomed Pharmacother ; 165: 115217, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37506578

ABSTRACT

Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules formed by mRNA exon back-splicing. Although the circRNA functions remain largely unknown, their currently known biological activities include: acting as competing endogenous RNA (ceRNA) to adsorb microRNA (miRNA), binding proteins, regulating transcription or splicing, and ability to be translated into proteins or peptides. A growing number of studies have found that many circRNAs are abnormally expressed in various cancers, and their dysregulation is highly correlated with tumor progression. Therefore, diagnosis and treatment using circRNAs as biomarkers and therapeutic targets, respectively, has gradually become an attractive research topic. In this review, we introduced the canonical biogenesis pathways and degradation mechanisms of circRNAs. In addition, we examined the biological functions of circRNAs in vivo. Finally, we discussed the current clinical applications and challenges faced by circRNA, and proposed future directions for this promising research field.


Subject(s)
MicroRNAs , Neoplasms , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/pathology , RNA Splicing , Exons
7.
J Sci Food Agric ; 103(15): 7621-7630, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37495560

ABSTRACT

BACKGROUND: Sacha inchi is known for its high protein content and medicinal properties. Bioactive peptides have been reported to have therapeutic potential in various human diseases. However, there is a lack of research evaluating the pharmacological value of peptides derived from Sacha inchi. Therefore, this study aimed to investigate the anti-hepatoma effect of Sacha inchi peptides (SPs) and their underlying mechanism. RESULTS: The study found that treatment with SPs significantly reduced the proliferation of HepG2 cells by inducing apoptosis and arresting the cell cycle at the G0/G1 phase. SPs also induced HepG2 cell apoptosis by increasing the levels of proteins such as Bax, Caspase-3 and P53. The study identified nine novel peptides in SPs, of which LLEPDVR, ALVEKAKAS and TGDGSLRPY exhibited higher cell proliferative inhibition rates compared to other peptides. CONCLUSION: The findings of this study suggest that Sacha inchi peptides have potential pharmacological effects in the treatment of liver cancer. SPs effectively suppress the cell cycle and facilitate cell apoptosis, indicating their anti-hepatoma effect. The novel peptides identified in SPs may have therapeutic value for liver cancer treatment. © 2023 Society of Chemical Industry.


Subject(s)
Liver Neoplasms , Tumor Suppressor Protein p53 , Humans , Hep G2 Cells , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Apoptosis , Peptides/metabolism , Mitochondria/metabolism
8.
Plant Sci ; 318: 111234, 2022 May.
Article in English | MEDLINE | ID: mdl-35351306

ABSTRACT

Although DNA binding with one finger (Dof) constitutes a crucial plant-specific family of transcription factors (TFs) that plays important roles in a wide range of biological processes, the molecular mechanisms underlying Dof regulation of flavonoid biosynthesis in plants remain largely unknown. Here, we characterized 28 Dof genes (FhDof1-FhDof28) from the 'Hongkong' kumquat (Fortunella hindsii) cultivar genome. Promoter analysis and transcriptome profiling revealed that four FhDofs - FhDof4, FhDof9, FhDof15, and FhDof16 - may be involved in flavonoid biosynthesis through binding to the flavonoid C-glycosyltransferase (FhCGT) promoter. We cloned homologous genes of four FhDofs, designated as FcDof4, FcDof9, FcDof15, FcDof16, and a homologous gene of FhCGT, designated as FcCGT, from the widely cultivated 'HuaPi' kumquat (F. crassifolia). Quantitative reverse transcription-polymerase chain reaction analysis revealed that FcDof4 and FcDof16 were significantly correlated with FcCGT expression during development stages in the 'HuaPi' fruit (Pearson's correlation coefficient > 0.7) and were localized to the nucleus. Results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays indicated that the two FcDofs trigger FcCGT expression by specifically binding to its promoters. Moreover, transient overexpression of FcDof4 and FcDof16 enhances the transcription of structural genes in the flavonoid biosynthetic pathway and increases C-glycosylflavonoid content. Our results provide strong evidence that the TFs FcDof4 and FcDof16 promote flavonoid synthesis in kumquat fruit by activating FcCGT expression.


Subject(s)
Fruit , Rutaceae , Flavonoids/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Proteins/metabolism , Rutaceae/metabolism , Transcription Factors/metabolism
9.
Foods ; 10(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34441506

ABSTRACT

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil's oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.

SELECTION OF CITATIONS
SEARCH DETAIL
...