Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36236212

ABSTRACT

A multi-channel backscatter communication and radar sensing system is proposed and demonstrated in this paper. Frequency modulated continuous wave (FMCW) radar ranging is integrated with simultaneous uplink data transmission from a self-packaged active radio frequency (RF) tag. A novel package solution is proposed for the RF tag. With the proposed package, the RF tag can transmit a 32-QAM signal up to 2.5 Gbps and QPSK signal up to 8 Gbps. For a multi-tag scenario, we proposed using spread spectrum code to separate the data from each tag. In this case, tags can be placed at arbitrary locations without adjacent channel interference. Proof-of-concept simulations and measurements are demonstrated. A 625 Mbps data rate is achieved in a dual-tag scenario for two tags.

2.
Sensors (Basel) ; 22(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080881

ABSTRACT

Non-contact vital sign detection technology has brought a more comfortable experience to the detection process of human respiratory and heartbeat signals. Ensemble empirical mode decomposition (EEMD) is a noise-assisted adaptive data analysis method which can be used to decompose the echo data of frequency modulated continuous wave (FMCW) radar and extract the heartbeat and respiratory signals. The key of EEMD is to add Gaussian white noise into the signal to overcome the mode aliasing problem caused by original empirical mode decomposition (EMD). Based on the characteristics of clutter and noise distribution in public places, this paper proposed a static clutter filtering method for eliminating ambient clutter and an improved EEMD method based on stable alpha noise distribution. The symmetrical alpha stable distribution is used to replace Gaussian distribution, and the improved EEMD is used for the separation of respiratory and heartbeat signals. The experimental results show that the static clutter filtering technology can effectively filter the surrounding static clutter and highlight the periodic moving targets. Within the detection range of 0.5 m~2.5 m, the improved EEMD method can better distinguish the heartbeat, respiration, and their harmonics, and accurately estimate the heart rate.


Subject(s)
Algorithms , Signal Processing, Computer-Assisted , Humans , Radar , Signal-To-Noise Ratio , Vital Signs
3.
Sensors (Basel) ; 22(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36081103

ABSTRACT

A high data rate RF-DAC and a power detector (PD) are designed and fabricated in a 250 nm indium phosphide (InP) double heterojunction bipolar transistor (DHBT) technology. A communication link using the Tx-Rx over polymer microwave fiber (PMF) is measured. The link consists of a pulse amplitude modulation (PAM) modulator and a PD as a demodulator, as well as a one-meter-long dielectric waveguide. The working frequency range of the complete link is verified to be 110−150 GHz. The peak output power of the PAM modulator is 5 dBm, and it has a −3 dB bandwidth of 43 GHz. The PD consists of a parallel connected common emitter configured transistor and a common base configured transistor to suppress the odd-order harmonics at the PD's output, as well as a stacked transistor to amplify the output signal. Tx and Rx chips, including pads, occupy a total area of only 0.83 mm2. The PMF link can support a PAM-4 signal with 22 Gbps data transmission, and a PAM-2 signal with 30 Gbps data transmission, with a bit error rate (BER) of <10−12, with demodulation performed in real time. Furthermore, the energy efficiency for the link (Tx + Rx) is 4.1 pJ/bit, using digital data input and receiving PAM-2 output (5.6 pJ/bit for PAM-4).

4.
Sensors (Basel) ; 22(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36081156

ABSTRACT

This paper presents a novel substrateless packaging solution for the D-band active e mixer MMIC module, using a waveguide line with a glide-symmetric periodic electromagnetic bandgap (EBG) hole configuration. The proposed packaging concept has the benefit of being able to control signal propagation behavior by using a cost-effective EBG hole configuration for millimeter-wave- and terahertz (THz)-frequency-band applications. Moreover, the mixer MMIC is connected to the proposed hollow rectangular waveguide line via a novel wire-bond wideband transition without using any intermediate substrate. A simple periodical nail structure is utilized to suppress the unwanted modes in the transition. Additionally, the presented solution does not impose any limitations on the chip's dimensions or shape. The packaged mixer module shows a return loss lower than 10 dB for LO (70-85 GHz) and RF (150-170 GHz) ports, achieving a better performance than that of traditional waveguide transitions. The module could be used as a transmitter or receiver, and the conversion loss shows good agreement in multiple samples. The proposed packaging solution has the advantages of satisfactory frequency performance, broadband adaptability, low production costs, and excellent repeatability for millimeter-wave- and THz-band systems, which would facilitate the commercialization of millimeter-wave and THz products.

5.
Sci Rep ; 7: 41828, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28145513

ABSTRACT

In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

SELECTION OF CITATIONS
SEARCH DETAIL
...